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 A B S T R A C T

Connectivity and autonomy stand out as two highly promising technologies for fuel efficiency in the realm of 
automated transportation. This paper addresses the issue of fuel consumption in autonomous truck platoons and 
introduces a hierarchical framework. Within the speed planning layer, a fuel consumption model for the leading 
truck is formulated to compute velocity profile. Simultaneously, a distributed learning-model predictive control 
(DL-MPC) method is employed to ensure the cohesive movement of a truck platoon in a predefined formation. 
The co-simulation platform, leveraging Trucksim and Simulink, provides a comprehensive environment for 
assessing and validating the proposed control strategy. Comparison experiments validate the effectiveness of 
the proposed method. Distributed model predictive control (DMPC) and two-delay deep deterministic policy 
gradient (TD3) algorithms are conducted to illustrate the advantages of the controller in terms of control 
performance and computation time. The speed planning method outperforms constant speed, experience-based 
speed setting, and reinforcement learning-based speed planning in terms of fuel efficiency. Furthermore, the 
energy-saving effect of the proposed strategy is verified from the perspective of engine fuel characteristics. 
Therefore, the framework proposed in this paper ensures excellent control performance and fuel economy of 
truck platoon while reducing the computation time of the controller.
1. Introduction

As the logistics industry develops, the number of trucks is increas-
ing, resulting in higher fossil fuel consumption and emissions [1]. 
Urban fine particulate concentration in China reaches 51 micrograms/
cubic meter, which is six times greater than that of the United States, 
and China aims to reduce CO2∕GDP by 60%–65% below 2005 by 
2030 adhering to The Paris Agreement. There is no doubt that lower 
fuel consumption leads to cost savings for truck platoons, and it also 
reduces emissions [2,3]. Platooning has the potential to improve road 
safety by significantly reducing reaction times and minimizing for the 
likelihood human error within the platoon, which can decrease rear-
end crashes [4]. Currently, the focus of research lies in minimizing 
energy consumption while ensuring the safety of truck platoons [5,6]. 
The comparison between the proposed work and existing studies are 
summarized in Table  1. As shown in the table, studies [3,7–11] have 
achieved fuel saving and longitudinal control but exhibit shortcomings 
in computational efficiency and lateral control. Studies [12–15] focus 
on both longitudinal and lateral control but do not address compu-
tational efficiency and speed planning. Meanwhile, studies [16–19] 
explore computational efficiency and both longitudinal and lateral 
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control but overlook speed planning and energy efficiency. In contrast, 
the proposed work in this study comprehensively addresses four key 
aspects – computational efficiency, fuel consumption, longitudinal con-
trol, and lateral control – effectively filling a critical gap in existing 
research.

1.1. Motivation

Although extensive research has been conducted on truck platoon-
ing control, several critical gaps remain. First, although most existing 
works focus primarily on longitudinal control for fuel efficiency [3,20], 
the coupling between longitudinal and lateral dynamics should not 
be neglected under real-world driving conditions. Second, distributed 
model predictive control (DMPC) has been widely adopted [16], yet 
its high computational burden poses challenges for large-scale real-
time applications. Third, speed planning strategies for the leading 
truck often fail to account for the dynamic constraints of follow-
ing trucks [21], resulting in impractical trajectories that cannot be 
reliably executed. These gaps highlight the necessity of developing 
a unified control framework that (i) explicitly accounts for coupled 
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Table 1
Comparing the proposed work with previous studies.
 Studies Computational 

efficiency
Fuel
consumption

Longitudinal
control

Lateral
control

 

 [3,7–11] ×
√ √

×  
 [12–15] × ×

√ √  
 [16–19] √

×
√ √  

 Proposed work √ √ √ √  
. 
longitudinal–lateral dynamics, (ii) enhances the computational effi-
ciency of DMPC-based methods for real-time implementation, and (iii) 
integrates speed planning with the physical tracking capabilities of 
following trucks.

Motivated by these challenges, this study addresses truck platooning 
control by jointly considering fuel economy, coupled longitudinal–
lateral dynamics, and computational efficiency. A two-layer control 
framework is designed, with the upper layer focused on speed planning 
for the leading truck, aimed at fuel-efficient speed profiles. With the 
lower layer, i.e., the platoon control layer, the distributed learning-
model predictive controller (DL-MPC) is designed to ensure platoon
safety.

1.2. Contributions

This paper makes several key contributions, which are outlined as 
follows:

(1) This paper proposes a speed planning strategy for the leading 
truck that incorporates both road information and the tracking capa-
bility of following trucks. The proposed approach explicitly integrates 
the dynamic response limits of following trucks into the speed planning 
process, thereby improving overall fuel efficiency and safety of the 
platoon.

(2) This paper develops a DL-MPC framework for longitudinal and 
lateral control of truck platoons, which represents a novel integration 
of traditional control methods and artificial intelligence. The proposed 
framework ensures efficient, safe, and coordinated movement of truck 
platoons in dynamic environments. This innovative approach enhances 
the system’s ability to respond to real-time changes in traffic and road 
conditions.

(3) The proposed method retains the control performance of tra-
ditional DMPC algorithm while possessing the efficient solving per-
formance of neural networks. Comparing with DMPC and two-delay 
deep deterministic policy gradient (TD3) algorithms, the proposed 
method can guarantee the control performance and reduce the com-
putation time.

1.3. Paper organization

The paper proceeds as follows: In Section 2, the relevant works 
are introduced. In Section 3, the longitudinal and lateral coupling 
dynamics model of trucks are established, a fuel consumption model 
of the leading truck is established, the platoon model and the control 
objectives are proposed, respectively. In Section 4, speed planning 
program of the leading truck is designed and a DL-MPC algorithm is 
designed. The tracking control performance and the fuel consumption 
of the platoon are presented in Section 5. Section 6 concludes the paper.

2. Related work

The analysis of fuel consumption in truck platoons has been ex-
tensively studied and can be divided into three primary approaches: 
vehicle spacing, traffic oscillation and speed planning [22]. In vehicle 
spacing approach, the correlation between the air resistance coefficient 
and the distance between the trucks is presented in [23,24]. These 
studies indicate that the average resistance of the platoon decreases 
as the spacing between trucks narrows, enabling greater fuel savings 
2 
with reduced spacing [23]. In [24], the relationship between fuel 
consumption and vehicle gap is studied, which shows that the fuel 
saving rate can reach 15% when the gap is maintained at 4.7 m. The 
traffic oscillation method examines fuel consumption in scenarios with 
frequent accelerations. In [25], in order to avoid unnecessary braking 
and acceleration during truck traveling, the minimum acceleration of 
the truck from static to set speed is studied. A reinforcement learn-
ing (RL) approach to fuel consumption analysis in traffic oscillation 
scenarios is presented in [26].

Speed planning approaches include methodologies such as dynamic 
program, back-step control, model predictive control and RL. In [27], 
a novel development of an ecological driving system for traveling a 
vehicle on roads with up−down slopes is presented. In [28], a coop-
erative control strategy is presented that takes into account preview 
information, which can achieve fuel savings of up to 14% on a steep 
descent compared to the adaptive cruise control system. In [29], a 
control objective is to maximize fuel economy by controlling a safe 
following distance or cruising at the optimum speed under constrained 
driving torque conditions. In [30], dynamic programming is used to cal-
culate the optimal fuel-efficient speed of the platoon, and a distributed 
model predictive control framework is developed to control the trucks 
in real time. The results show that the fuel consumption of the following 
trucks can be reduced by 12%. A two-level hierarchical framework 
for a truck platoon coordination has been presented in [31], which 
designs a discrete-time back-step control law based on a nonlinear 
vehicle model that considers road gradient and vehicle heterogeneity, 
and strengthens the control law with a novel string stability criterion. 
In [32], a distributed model predictive control method is designed for 
the fuel-efficiency of heavy-duty trucks, and the fuel saving of the 
proposed control strategy is studied by simulation. In [33], a low-cost 
predictive cruise control method is presented. The method achieves 
energy savings of 8% to 10% compared to conventional adaptive cruise 
control when testing on a real truck test platform. In [34], a RL 
approach is used to train vehicles to keep safe spacing and reduce fuel 
consumption by setting the reward function.

Most of the previous studies have focused on speed planning and 
energy-saving control for the longitudinal dynamics of the platoons [35]
However, in practical applications, lateral dynamics should also be 
considered in addition to longitudinal dynamics. A multi-objective 
integrated control structure is designed to coordinate lateral and lon-
gitudinal motion control in [36], encompassing a global cooperative 
control layer, a control allocation layer, and an action execution layer. 
The dynamics model of the vehicle’s longitudinal and lateral coupling 
characteristics is established, and the nonlinear controllers for longi-
tudinal and automatic steering based on nonlinear model predictive 
control are designed, respectively [37]. Based on the six-degree-of-
freedom vehicle dynamics model, a new integrated control system for 
longitudinal, lateral and vertical is proposed in [38]. The system is 
based on model predictive control and can also consider operability.

Truck platoons usually operate in complex traffic environments 
rather than isolated highways. Platoon control must handle additional 
challenges, including mixed traffic with human-driven vehicles, uncer-
tain driver behaviors, traffic signals, and disturbances from commu-
nication. Some studies have addressed some of these issues, such as 
merge–diverge coordination [39–41], multi-platoon cooperation [42,
43], and the influence of road surface [44,45].

In addition, communication is an another critical factor. Communi-
cation delays have been extensively studied [46,47]. More challenging 
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communication scenarios, such as packet loss, topology switching, and 
denial-of-service (DoS) attacks, have also been investigated, where 
adaptive and switching-based control laws were designed to maintain 
tracking performance and safety [48–50]. Some works propose dis-
tributed detection and recovery mechanisms, as well as security-aware 
topology reconfiguration strategies, to enhance resilience against dis-
turbances [51,52]. These studies suggest that extending platoon control 
strategies to account for complex traffic interactions, communication 
uncertainties, and security threats is essential for practical deployment.

Due to the strong nonlinearity of the longitudinal and lateral dy-
namics coupling model, the model predictive control has a huge com-
putational burden when solving the optimization problems, and the 
real-time performance of the platoon control cannot be guaranteed. 
In [53], a simplified dynamic model is obtained by ignoring the cou-
pling component of the longitudinal driving force in the lateral dynam-
ics, resulting in a 9.6% reduction in time. Moreover, a dual-mode DMPC 
strategy is proposed in [54], which can not only significantly reduce the 
computation time and save communication resources, but also ensure 
the iterative feasibility and stability of the proposed algorithm.

3. Problem setup

In this section, firstly, the longitudinal and lateral coupling dynam-
ics model of the truck is established. Secondly, the fuel consumption 
model of the leading truck is established. Then, the longitudinal speed 
of the leading truck is taken as the expected speed of the platoon. 
Finally, the control objectives are proposed. Considering a truck pla-
toon consists of 𝑁 trucks travels on a road, where the leading truck 
is numbered as 0, and the following trucks are sequentially numbered 
from 1 ⋯𝑁 − 1. It is assumed that the communication network is 
completely reliable, i.e., there is no channel fading, packet dropout, 
or delay.

The hierarchical control scheme is shown in Fig.  1. The intelligent 
connected vehicles (ICV) achieve dual objectives of fuel efficiency 
optimization and safety control through the collaboration between 
the leading truck and the following trucks. The leading truck utilizes 
vehicle to infrastructure (V2I) technology to obtain road information 
and combines a powertrain model to compute an energy-efficient ref-
erence speed. Meanwhile, the following trucks leverage vehicle to 
vehicle (V2V) communication to share real-time state data and employ 
distributed controllers to adjust their speed and spacing, ensuring both 
longitudinal and lateral safety. By integrating information exchange 
with coordinated control algorithm, the system enables the platoon to 
operate with enhanced energy efficiency and safe driving performance.

3.1. Truck dynamics

A classical three-degree-of-freedom model [55] is adopted, in which 
the motion of the truck in the longitudinal, lateral and yaw directions 
are considered. The first-principle model of the 𝑖th truck is as follows: 
⎧

⎪

⎨

⎪

⎩

𝑚𝑖𝑣̇𝑥𝑖 − 𝑚𝑖𝑣
𝑦
𝑖 𝜑̇𝑖 = 𝐹 𝑥𝑓

𝑖 cos 𝛿𝑖 − 𝐹 𝑦𝑓
𝑖 sin 𝛿𝑖 + 𝐹 𝑥𝑟

𝑖 − 𝐹 𝑓
𝑖

𝑚𝑖𝑣̇
𝑦
𝑖 − 𝑚𝑖𝑣𝑥𝑖 𝜑̇𝑖 = 𝐹 𝑥𝑓

𝑖 sin 𝛿𝑖 + 𝐹 𝑦𝑓
𝑖 cos 𝛿𝑖 + 𝐹 𝑦𝑟

𝑖
𝐼𝑧𝑖 𝜑̈𝑖 =

(

𝐹 𝑥𝑓
𝑖 sin 𝛿𝑖 + 𝐹 𝑦𝑓

𝑖 cos 𝛿𝑖
)

𝑎𝑖 − 𝐹 𝑦𝑟
𝑖 𝑏𝑖

(1)

where 𝑣𝑥𝑖 , 𝑣
𝑦
𝑖  and 𝜑̇𝑖 are the longitudinal velocity, lateral velocity, yaw 

angle rate of truck. The term of 𝑚𝑖 is the mass of truck, 𝐼𝑧𝑖  is the moment 
of inertia around 𝑧 axis, 𝑎𝑖 and 𝑏𝑖 are the distances from front axle and 
rear axle to mass center, 𝛿𝑖 is the lateral control input representing 
steering angle of the front wheel, 𝐹 𝑥𝑓

𝑖 , 𝐹 𝑥𝑟
𝑖 , 𝐹

𝑦𝑓
𝑖 , 𝐹 𝑦𝑟

𝑖  and 𝐹 𝑓
𝑖  are the 

longitudinal force of front wheel, longitudinal force of rear wheel, 
lateral force of front wheel, lateral force of rear wheel and the travel 
resistance of the truck, respectively.

Wheel force analysis is shown in Fig.  2 and the dynamics of the 
wheels are: 
⎧

⎪

⎨

⎪

𝜔̇𝑓
𝑖 =

𝑇 𝑑
𝑖 −𝑅𝑤𝐹 𝑥𝑓

𝑖
𝐽𝑓
𝑖

𝜔̇𝑟 =
𝑇 𝑑
𝑖 −𝑅𝑤𝐹 𝑥𝑟

𝑖
(2)
⎩

𝑖 𝐽 𝑟
𝑖

3 
where 𝜔𝑓
𝑖  and 𝜔𝑟

𝑖  are the angular velocity of front and rear wheel; 𝐽
𝑓
𝑖

and 𝐽 𝑟
𝑖  are the moment of inertia of front and rear wheel; 𝑇 𝑑

𝑖  is the 
longitudinal control input representing the torque of rear wheel; 𝑅𝑤 is 
the wheel rolling radius.

Combining (1) and (2), a five-degree-of-freedom (5-DOF) dynamic 
model of trucks [56] is established as follows: 
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑣̇𝑥𝑖 = 𝑣𝑦𝑖 𝜑̇𝑖 +
𝐹 𝑥𝑓
𝑖 cos 𝛿𝑖−𝐹

𝑦𝑓
𝑖 sin 𝛿𝑖+𝐹 𝑥𝑟

𝑖 −𝐹 𝑓
𝑖

𝑚𝑖

𝑣̇𝑦𝑖 = −𝑣𝑥𝑖 𝜑̇𝑖 +
𝐹 𝑥𝑓
𝑖 sin 𝛿𝑖+𝐹

𝑦𝑓
𝑖 cos 𝛿𝑖+𝐹

𝑦𝑟
𝑖

𝑚𝑖

𝜑̈𝑖 =

(

𝐹 𝑥𝑓
𝑖 sin 𝛿𝑖+𝐹

𝑦𝑓
𝑖 cos 𝛿𝑖

)

𝑎𝑖−𝐹
𝑦𝑟
𝑖 𝑏𝑖

𝐼𝑧𝑖

𝜔̇𝑓
𝑖 =

𝑇 𝑑
𝑖 −𝑅𝑤𝐹 𝑥𝑓

𝑖
𝐽𝑓
𝑖

𝜔̇𝑟
𝑖 =

𝑇 𝑑
𝑖 −𝑅𝑤𝐹 𝑥𝑟

𝑖
𝐽 𝑟
𝑖

(3)

Fig.  3 shows the 5-DOF dynamics model of trucks. The Pacejka tire 
model [57] is applied in this paper, in which the tire force can be 
calculated by 

𝐹 (𝜒) = 𝐷 sin (𝐶 arctan (𝐵𝜒 − 𝐸 (𝐵𝜒 − arctan (𝐵𝜒)))) (4)

where 𝐵, 𝐶, 𝐷 and 𝐸 are the parameters of the tire, the input variable 
𝜒 is the slip ratio or the slip angle, and the output variable 𝐹 (𝜒) is the 
longitudinal tire force or the lateral tire force, respectively.

Note that the planar motion of trucks is considered, and the influ-
ence of roll and pitch is neglected. The load distribution between the 
front and rear wheels is not taken into account, and the steering angles 
of the left and right wheels are assumed to be equal.

To validate the effectiveness of the 5-DOF dynamic model, a com-
parative analysis is conducted between the model’s outputs and those 
generated by TruckSim under identical input conditions. The input 
signals include a constant driving torque of 1000 N m and a sinusoidal 
front wheel steering angle with an amplitude of 0.01 rad. Note that 
the torque value of 1000 N m is chosen because it falls within the 
typical range of heavy-duty truck powertrains [58]. The purpose of 
this setting is to provide a realistic but non-extreme driving condition 
for validating the proposed 5-DOF dynamic model, rather than to 
investigate performance limits. The simulation results are presented in 
Fig.  4, where Figs.  4(a)–(d) show the front wheel steering angle, the 
longitudinal and lateral velocity, yaw rate, respectively.

To quantitatively evaluate the model fitting, three error metrics are 
employed: the Mean Absolute Error (MAE), the Root Mean Square Error 
(RMSE), and the coefficient of determination (R2). MAE measures the 
average absolute deviation between the predicted and measured values, 
providing a direct indication of the typical error magnitude, with units 
identical to the original data. RMSE emphasizes larger deviations by 
squaring the errors before averaging and taking the square root, re-
flecting the model’s overall accuracy in the presence of occasional large 
errors. The term of R2 is a dimensionless indicator that represents the 
proportion of variance in the measured data explained by the model, 
where values closer to 1 indicate stronger agreement. By combining 
absolute error metrics (MAE, RMSE) with the relative goodness-of-fit 
(R2), allows for a comprehensive assessment of the model’s numerical 
accuracy and trend consistency, a comprehensive assessment of the 
model’s numerical accuracy and trend consistency is achieved, thereby 
strengthening the credibility of the validation results. The performance 
evaluation of model fitting is summarized in Table  2.

The results indicate that under the same input conditions, the output 
trends of the 5-DOF dynamic model closely match those of TruckSim, 
with small discrepancies. This demonstrates that the proposed model 
effectively captures the longitudinal and lateral motion characteristics 
of commercial trucks, making it suitable for the controller design.
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Fig. 1. The diagram for balancing fuel efficiency and safety control of the platoon.
Fig. 2. The wheel force analysis.

Fig. 3. The five-degree-of-freedom dynamics model of trucks.

Table 2
Performance evaluation of model fitting.
 Results MAE RMSE R2  
 Front wheel steering angle 0.31 × 10−3 (rad) 0.37 × 10−3 (rad) 0.9971 
 Longitudinal velocity 0.025 (m∕s) 0.037 (m∕s) 0.9997 
 Lateral velocity 6.83 × 10−3 (m∕s) 7.83 × 10−3 (m∕s) 0.9798 
 Yaw rate 2.23 × 10−3 (rad∕s) 2.48 × 10−3 (rad∕s) 0.9731 
4 
3.2. Fuel consumption model of the leading truck

The fuel consumption of the truck on the slope is mainly related to 
the mass and the longitudinal speed. Planning the speed of the leading 
truck not only reduces its own fuel consumption but also enables 
the following trucks to track its speed, thus achieve the fuel-saving 
objective of the platoon. Fig.  5 shows the longitudinal dynamics of the 
leading truck on a slope.

Assume that any momentary variations in the performance of the 
engine and mechanical power can be disregarded [34]. Then, the 
dynamics model of the leading truck on the slope can be expressed as 
follows: 
⎧

⎪

⎨

⎪

⎩

𝑑𝑠0
𝑑𝑡

= 𝑣0

𝑚0
𝑑𝑣0
𝑑𝑡

= 𝐹𝑒,0 − 𝐹 𝑓
0

(5)

where 𝑠0 and 𝑣0 are the position and speed of the leading truck. Note 
that 𝐹𝑒,0 is the force provided by the engine, 𝐹 𝑓

0 = 𝐹𝑡𝑓 ,0+𝐹𝑎𝑒𝑟𝑜,0+𝐹𝑔𝑟𝑎,0, 
in which 𝐹𝑡𝑓 ,0, 𝐹𝑎𝑒𝑟𝑜,0 and 𝐹𝑔𝑟𝑎,0 are rolling resistance, air resistance 
and slope resistance, and note that 𝐹𝑡𝑓 ,0 = 𝐶𝑡𝑓 ,0𝑚0𝑔 cos 𝜃, 𝐹𝑎𝑒𝑟𝑜,0 =
1
2𝜌𝐶𝑎𝑒𝑟𝑜,0𝐴𝑣20, 𝐹𝑔𝑟𝑎,0 = 𝑚0𝑔 sin 𝜃. The term of 𝐶𝑡𝑓 ,0 is the rolling resistance 
coefficient of the leading truck, 𝐶𝑎𝑒𝑟𝑜,0, 𝑚0, and 𝐴 are the air resistance 
coefficient, the mass, and the windward aero of the leading truck, 
respectively. The term of 𝜌 is the air density, 𝑔 and 𝜃 are gravity 
acceleration and slope angle.

The mechanical power of trucks needs to overcome the effect of 
gravity, and the fuel consumption of trucks is closely related to the 
mechanical powertrain [59]. The mechanical powertrain of the leading 
truck can be expressed as follows: 
𝑃 =

(

𝐹𝑎𝑒𝑟𝑜,0 + 𝐹𝑔𝑟𝑎,0 + 𝐹𝑡𝑓 ,0 + 𝐹𝑒,0
)

𝑣0 (6)

The fuel consumption of the truck can be described as: 
𝐸𝑓𝑢𝑒𝑙 =

𝛼
𝛾 ⋅ 𝛽

(𝜎 ⋅ 𝜀 ⋅ 𝜏 + 𝑃∕𝜂) (7)

where 𝐸𝑓𝑢𝑒𝑙 and 𝑃  are the fuel consumption rate and mechanical power 
of the truck, 𝛼 is the mass ratio of fuel to air, 𝛾 is the calorific value of 
typical diesel, 𝛽, 𝜎, 𝜀 and 𝜏 are the friction coefficient, engine speed, 
exhaust volume and conversion factor of the engine. The term of 𝜂
is the efficiency parameter, and 𝜂 = 𝜂𝑓 ⋅ 𝜂𝑐 , in which 𝜂𝑓  and 𝜂𝑐 are 
the efficiency parameters of the engine and the transmission system, 
respectively.
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Fig. 4. Model validation experiment: (a) front wheel steering angle, (b) longitudinal velocity, (c) lateral velocity, (d) yaw rate.
Fig. 5. The longitudinal dynamics model of the leading truck on a slope.

Remark 1. The actual fuel consumption of trucks is influenced by nu-
merous external factors such as the tread and pressure of tire, weather 
conditions, density and humidity of air, fuel is also consumed by diesel 
engines when idling [27], which is almost negligible. For the sake of 
simplicity, in this paper, a relatively straightforward fuel consumption 
model is adopted that does not account for idling fuel consumption.

3.3. Platoon model

In order to accurately follow the required reference path, onboard 
sensors are essential for providing relative positional information be-
tween trucks, as well as between the truck and reference path.

To showcase varied platoon performances, truck platoon control 
has developed several spacing policies including constant spacing pol-
icy (CSP), constant time headway policy, and variable time headway 
policy [60]. To prevent the gap between trucks from amplifying as 
their speed increases, which results in greater fuel consumption, CSP 
5 
Fig. 6. The distance diagram of the truck platoon.

and predecessor-leader following information flow topology [61] are 
adopted in this paper.

A truck platoon is shown in Fig.  6, where 𝑠𝑖 and 𝑠𝑖−1 are the 
longitudinal positions of the 𝑖th following truck and the (𝑖 − 1)th 
following truck, 𝑠0 and 𝑑𝑑𝑒𝑠 are the longitudinal position of the leading 
truck and the desired spacing, respectively.

Fig.  7 illustrates the configuration of the lane-keeping model, where 
𝑒𝑝𝑖  represents the longitudinal position error, 𝐿 is the preview distance, 
𝑒𝑦𝑖  and 𝑒

𝜑
𝑖  are the lateral position error and heading angle error, 

respectively, and 𝑅 is the radius of the curve.
Define spacing error of the 𝑖th truck as: 

𝑒𝑝𝑖 = 𝑠𝑖 − (𝑠0 − 𝑖𝑑𝑑𝑒𝑠) (8)

Define heading error of the 𝑖th truck as: 
𝑒𝜑𝑖 = 𝜑𝑑 − 𝜑𝑖 (9)

where 𝜑𝑑 and 𝜑𝑖 correspond to the tangential angle of lane and the 
actual truck heading angle.
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Fig. 7. The structure of the lane-keeping model.

The term of 𝑒𝑦𝑖  is defined as lateral position error: 

𝑒̇𝑦𝑖 = 𝑣𝑥𝑖 𝑒
𝜑
𝑖 − 𝑣𝑦𝑖 − 𝐿𝜑̇𝑖 (10)

Combining (3), (8), (9) and (10), the integrated platoon model is 
as follows: 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑣̇𝑥𝑖 = 𝑣𝑦𝑖 𝜑̇𝑖 +
𝐹 𝑥𝑓
𝑖 cos 𝛿𝑖−𝐹

𝑦𝑓
𝑖 sin 𝛿𝑖+𝐹 𝑥𝑟

𝑖 −𝐹 𝑓
𝑖

𝑚𝑖

𝑣̇𝑦𝑖 = −𝑣𝑥𝑖 𝜑̇𝑖 +
𝐹 𝑥𝑓
𝑖 sin 𝛿𝑖+𝐹

𝑦𝑓
𝑖 cos 𝛿𝑖+𝐹

𝑦𝑟
𝑖

𝑚𝑖

𝜑̈𝑖 =
(𝐹 𝑥𝑓

𝑖 sin 𝛿𝑖+𝐹
𝑦𝑓
𝑖 cos 𝛿𝑖)𝑎𝑖−𝐹

𝑦𝑟
𝑖 𝑏𝑖

𝐼𝑧𝑖

𝑤̇𝑓
𝑖 =

𝑇 𝑑
𝑖 −𝑅𝑤𝐹 𝑥𝑓

𝑖
𝐽𝑓
𝑖

𝑤̇𝑟
𝑖 =

𝑇 𝑑
𝑖 −𝑅𝑤𝐹 𝑥𝑟

𝑖
𝐽 𝑟
𝑖

𝑒̇𝑝𝑖 = 𝑣𝑥𝑖 − 𝑣𝑥0
𝑒̇𝑦𝑖 = 𝑣𝑥𝑖 𝑒

𝜑
𝑖 − 𝑣𝑦𝑖 − 𝐿𝜑̇𝑖

𝑒̇𝜑𝑖 = 𝜑̇𝑑 − 𝜑̇𝑖

(11)

Remark 2. The above problem formulation is developed under some 
assumptions, including homogeneous trucks, reliable communication, 
and known road geometry, with the application scenario restricted to 
highway environments. These assumptions are deliberately made to 
highlight the essential control objectives of platoon and to establish 
an optimization framework. Such a baseline setting facilitates a clear 
analysis of the effects of DMPC and its learning-based extension on 
platoon performance, and it also provides methodological insights that 
can be extended to more complex and uncertain traffic environments 
in future work.

3.4. Control objectives of truck platoons

This paper aims to address the problem of fuel efficiency as well 
as cooperative control of truck platoons using a hierarchical control 
structure. The objectives are as follows:

3.4.1. The objective of fuel saving
For the leading truck, fuel consumption is modeled by combining 

road information and the tracking capability of the following trucks, 
aiming to generate a reference speed profile for the truck platoon that 
minimizes fuel consumption, i.e., minimize  𝐸𝑓𝑢𝑒𝑙.

3.4.2. The objectives of platoon control
(1) The longitudinal position of the following trucks in the platoon 

satisfies the desired spacing policy, i.e., the longitudinal spacing error 
is minimized: 

minimize ‖‖
‖

𝑠𝑖 −
(

𝑠0 − 𝑖 ⋅ 𝑑𝑑𝑒𝑠
)

‖

‖

‖

2

2
(12)
6 
(2) The velocity of the 𝑖th following truck tracks the velocity of the 
leading truck, and the longitudinal velocity error between the following 
trucks and the leading truck is minimized: 

minimize ‖‖
‖

𝑣𝑥𝑖 − 𝑣𝑥0
‖

‖

‖

2

2
(13)

where 𝑣𝑥0 and 𝑣𝑥𝑖  are the longitudinal velocities of the leading truck and 
the 𝑖th following truck, respectively.

(3) The expected lateral position error 𝑒𝑦𝑖  and heading angle error 
𝑒𝜑𝑖  are minimized: 
⎧

⎪

⎨

⎪

⎩

minimize ‖‖
‖

𝑒𝑦𝑖
‖

‖

‖

2

2

minimize ‖‖
‖

𝑒𝜑𝑖
‖

‖

‖

2

2

(14)

4. Controller design

In this section, the task of reducing fuel consumption, and safety of 
truck platoons are split into two layers. To provide a clear overview 
of the proposed methodology, the overall framework of the truck 
platoon control strategy is illustrated in Fig.  8. The framework adopts 
a hierarchical scheme that integrates DL-MPC. As shown in the figure, 
the upper layer is responsible for speed planning of the leading truck, 
while the lower layer employs distributed controllers for each following 
truck to ensure safety. The actor–critic networks are embedded in the 
DL-MPC scheme to enhance prediction and control efficiency, thereby 
improving both fuel economy and platoon stability.

4.1. Speed planning of the leading truck

Considering the following capability of the following trucks, the 
speed planning of the leading truck is carried out, and the following 
trucks follow the speed of the leading truck to achieve the purpose 
of fuel saving. The position and speed of the truck are expressed as 
𝑥 = [𝑠, 𝑣]𝑇 , and the power of the engine is selected as the control input 
𝑢.

Define the output as: 
𝑦 = [𝑠, 𝑣]𝑇 (15)

Denote the sampling time as 𝛥𝑇 , the discrete form of (5) can be 
expressed as follows: 
{

𝑥(ℎ + 1) = 𝑔 (𝑥 (ℎ) , 𝑢 (ℎ))
𝑦(ℎ) = 𝑥 (ℎ)

(16)

The control sequence in the prediction horizon is defined as: 
𝑈 (ℎ) = {𝑢(ℎ|ℎ),… , 𝑢(ℎ +𝐻 − 1|ℎ)} (17)

where 𝐻 is the prediction horizon within the speed planning layer, and 
note that ℎ + 𝑗|ℎ denotes the predicted value of the time instant ℎ for 
the time instant ℎ + 𝑗.

To determine the optimal economic speed for the leading truck, 
problem 1 need to be solved, which aims to find the speed that 
minimizes fuel consumption. The description of problem 1 is as follows: 

Problem 1. 

minimize
𝑈 (ℎ)

𝐽 =
𝐻−1
∑

ℎ=0
𝐸𝑓𝑢𝑒𝑙 (𝑥 (ℎ) , 𝑢 (ℎ)) (18a)

𝑠.𝑡.

𝑥(ℎ + 𝑗 + 1|ℎ) = 𝑔 (𝑥(ℎ + 𝑗|ℎ), 𝑢(ℎ + 𝑗|ℎ)) (18b)

𝑦(ℎ + 𝑗|ℎ) = 𝑥(ℎ + 𝑗|ℎ) (18c)

𝑦(ℎ|ℎ) = 𝑦(ℎ) (18d)

𝐹𝑒,min ≤ 𝐹𝑒 ≤ 𝐹𝑒,max (18e)

𝑣 ≤ 𝑣 ≤ 𝑣 (18f)
min max
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Fig. 8. Framework of the truck platoon control strategy.
𝑦𝑖
In Problem  1, (18e) is the control constraint, (18f) represents the 
speed constraint of the highway. Note that in the speed planning 
layer, the formulation primarily focuses on the longitudinal dynamics 
and physical constraints of the truck, without explicitly modeling in-
ternal and external uncertainties. This modeling choice is consistent 
with many existing studies on fuel-efficient speed planning for truck 
platoons [3,8], where simplified longitudinal models are commonly 
adopted to ensure tractability of the optimization problem. By con-
centrating on the dominant dynamics and physical limitations of the 
truck, the speed planning problem can be effectively solved as an upper-
level optimization that generates a feasible and fuel-efficient reference 
trajectory for the platoon. Importantly, by first addressing the domi-
nant dynamics under simplified conditions, this formulation provides 
a structured foundation for extending the method to more realistic 
scenarios, including mixed traffic, traffic signals, and uncertainties in 
vehicle dynamics. By concentrating on the dominant dynamics and 
physical limitations of the truck, the speed planning problem can 
be effectively solved as an upper-level optimization that generates a 
feasible and fuel-efficient reference trajectory for the platoon. 

Remark 3. Problem  1 focuses on the speed planning of the leading 
truck, considering the tracking capabilities of the following trucks by 
applying control constraints. This is a reasonable approach given that it 
is neither efficient nor practical to plan different reference velocities for 
each truck. Although tracking the leading truck’s reference speed may 
slightly increase fuel consumption, the gains in collaborative control 
and stability for the platoon outweigh this drawback.

4.2. Platoon control based on DMPC

To ensure practical feasibility in controller design, the following 
assumptions are introduced prior to formulating the DMPC problem:

• The communication network among trucks is reliable and free of 
packet loss or delay, so that each truck can access the necessary 
state information from its neighbors in real time.

• The road geometry is known and detectable by onboard sensors, 
and all trucks are assumed to travel on the same lane.
7 
Under the DMPC framework, each truck is equipped with an indi-
vidual control unit.

Denote the state: 
𝑥𝑖 = [𝑣𝑥𝑖 𝑣𝑦𝑖 𝜑̇𝑖 𝜔𝑓

𝑖 𝜔𝑟
𝑖 𝑒𝑝𝑖 𝑒𝑦𝑖 𝑒𝜑𝑖 ]

𝑇 (19)

and the output: 
𝑦𝑖 = [𝑣𝑥𝑖 𝑒𝑝𝑖 𝑒𝑦𝑖 𝑒𝜑𝑖 ]

𝑇 (20)

The control inputs are the driving/brake torque of rear tires, and 
the steering angle of the front tires, respectively: 
𝑢𝑖 = [𝑇 𝑑

𝑖 𝛿𝑖]𝑇 (21)

Denote the sampling time as 𝑇𝑠. The discrete form of (11) can be 
expressed as follows: 
{

𝑥𝑖(𝑘 + 1) = 𝑓𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘))
𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘)

(22)

where 𝐶𝑖 = 𝑑𝑖𝑎𝑔(1, 0, 0, 0, 0, 1, 1, 1), 𝑖 = 0, 1,… , 𝑁 − 1.
Based on (22), the output of the 𝑖th truck is: 

,𝑑𝑒𝑠 (𝑘)=
[

𝑣𝑥𝑖,𝑑𝑒𝑠 (𝑘) 𝑒𝑝𝑖,𝑑𝑒𝑠 (𝑘) 𝑒𝑦𝑖,𝑑𝑒𝑠 (𝑘) 𝑒𝜑𝑖,𝑑𝑒𝑠 (𝑘)
]𝑇

(23)

where 𝑣𝑥𝑖,𝑑𝑒𝑠 (𝑘) is the desired longitudinal speed of the 𝑖th truck, and 
set 𝑣𝑥𝑖,𝑑𝑒𝑠 (𝑘) = 𝑣0 (𝑘). Terms of 𝑒𝑝𝑖,𝑑𝑒𝑠 (𝑘), 𝑒

𝑦
𝑖,𝑑𝑒𝑠 (𝑘) and 𝑒

𝜑
𝑖,𝑑𝑒𝑠 (𝑘) represent 

the longitudinal expected position error, lateral expected position error 
and expected heading angle error of the 𝑖th truck, respectively.

For each truck 𝑖, The tracking error is defined as: 
𝑒𝑖(𝑘) = 𝑦𝑖(𝑘) − 𝑦𝑖,𝑑𝑒𝑠(𝑘) (24)

The control sequence in the prediction horizon is defined as: 
𝑈𝑖(𝑘) = {𝑈𝑖(𝑘|𝑘),…𝑈𝑖(𝑘 +𝑁𝑝 − 1|𝑘)} (25)

where 𝑁𝑝 represents the prediction horizon within the platoon control 
layer. Note that 𝑘+ 𝑗|𝑘 denotes the predicted value of the time instant 
𝑘 for the time instant 𝑘 + 𝑗.

The objective of problem 2 is to ensure the safe control of trucks, 
allowing the trucks to maintain a platoon. The description of problem 
2 is as follows: 
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Problem 2. 

minimize
𝑈𝑖(𝑘)

𝐽𝑖
(

𝑒𝑖(𝑘), 𝑈𝑖 (𝑘)
)

(26a)

𝑠.𝑡.

𝑥𝑖(𝑘 + 𝑗 + 1|𝑘) = 𝑓𝑖(𝑥𝑖(𝑘 + 𝑗|𝑘), 𝑢𝑖(𝑘 + 𝑗|𝑘)) (26b)

𝑦𝑖(𝑘 + 𝑗|𝑘) = 𝐶𝑖𝑥𝑖(𝑘 + 𝑗|𝑘) (26c)

𝑦𝑖 (𝑘|𝑘) = 𝑦𝑖 (𝑘) (26d)

𝑇 𝑑
𝑖,𝑚𝑖𝑛 ≤ 𝑇 𝑑

𝑖 (𝑘 + 𝑗|𝑘) ≤ 𝑇 𝑑
𝑖,𝑚𝑎𝑥 (26e)

𝛿𝑖,𝑚𝑖𝑛 ≤ 𝛿𝑖(𝑘 + 𝑗|𝑘) ≤ 𝛿𝑖,𝑚𝑎𝑥 (26f)

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
)

= 0 (26g)

where 

𝐽𝑖
(

𝑒𝑖 (𝑘) , 𝑈𝑖 (𝑘)
)

=
𝑁𝑝−1
∑

𝑗=0

(

‖

‖

𝑒𝑖 (𝑘 + 𝑗|𝑘)‖
‖

2
𝑄𝑖

+ ‖

‖

𝑢𝑖 (𝑘 + 𝑗|𝑘)‖
‖

2
𝑅𝑖

)

(27)

In the objective function 𝐽𝑖, terms of 𝑄𝑖 and 𝑅𝑖 are the weight 
matrices, (26e) and (26f) are the control constraints. Term of (26g) de-
notes the terminal equality constraint, which guarantees the asymptotic 
consensus of the truck platoon [62,63]. However, the terminal equality 
constraint in the actual solution is difficult to be satisfied. Here, term 
of (26g) is reformulated as a soft constraint to facilitate further pro-
cessing, and the term of 𝐹𝑖

(

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
)) is the terminal cost function, 

The expression of the terminal cost function is 𝐹𝑖
(

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
))

=
‖

‖

‖

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
)

‖

‖

‖

2

𝑃𝑖
, where 𝑃𝑖 is the terminal penalty matrix, with 𝑃𝑖 =

10𝑄𝑖. Then, (27) can be rewritten as: 

𝐽𝑖
(

𝑒𝑖 (𝑘) , 𝑈𝑖 (𝑘)
)

=
𝑁𝑝−1
∑

𝑗=0

(

‖

‖

𝑒𝑖 (𝑘 + 𝑗|𝑘)‖
‖

2
𝑄𝑖

+ ‖

‖

𝑢𝑖 (𝑘 + 𝑗|𝑘)‖
‖

2
𝑅𝑖

)

+ 𝐹𝑖
(

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
))

(28)

In summary, the objective of the DMPC formulation is to min-
imize spacing, velocity, and lateral errors while penalizing control 
efforts, thereby ensuring platoon consistency and meeting the control 
objectives. The constraints (26e)–(26f) reflect the actuator limitations 
of trucks, and the terminal condition (26g) is relaxed into a soft 
constraint with a terminal cost. The formulation relies on the assump-
tions of reliable communication, accurate local dynamics within the 
prediction horizon, and known road geometry. Such a distributed struc-
ture reduces computational burden and ensures scalability to larger 
platoons.

4.3. Distributed learning-model predictive control

Reinforcement learning can be employed to learn solutions for spec-
ified optimal control problems in real-time  [64]. Predictive controllers 
designed for nonlinear systems often involve solving non-convex con-
strained optimization problems. As the system state and control dimen-
sions increase, the computational burden and data storage requirements 
also rapidly grow. Currently, numerical solutions are often obtained 
through iterative methods, and policy iteration techniques are effective 
means for solving optimal control strategies [65]. Here, the actor-critic 
neural network structure based on the policy iteration concept in RL is 
employed to solve the constrained optimization problem for each truck.

Remark 4. As a practical and efficient implementation of the DL-
MPC method, neural networks and kernel-based basis vectors will be 
employed in the DL-MPC method.

Denote the stage cost function as: 

𝑟𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢𝑖 (𝑘 + 𝑗|𝑘)
)

= ‖

‖

𝑒𝑖 (𝑘 + 𝑗|𝑘)‖
‖

2
𝑄𝑖

+ ‖

‖

𝑢𝑖 (𝑘 + 𝑗|𝑘)‖
‖

2
𝑅𝑖

(29)
8 
Fig. 9. Diagram of RBF neural network.

In the prediction horizon 𝑗 ∈
[

𝑘, 𝑘 +𝑁𝑝 − 1
]

, according to the 
Bellman optimality principle, the optimal cost function of the system 
satisfies [66,67]: 

𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

= min
‖

‖

𝑈̄−1𝑢𝑖‖‖∞≤1

(

𝑟
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢𝑖 (𝑘 + 𝑗|𝑘)
)

+𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

)

(30)

and 𝐽 ∗
𝑖
(

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
))

= ‖

‖

‖

𝑒𝑖
(

𝑘 +𝑁𝑝|𝑘
)

‖

‖

‖

2

𝑃𝑖
 when 𝑗 = 𝑘 +𝑁𝑝.

Then, the optimal control 𝑢∗𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) satisfies [66,67]: 

𝑢∗𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

= arg min
‖

‖

𝑈̄−1𝑢𝑖‖‖∞≤1

(

𝑟𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢𝑖 (𝑘 + 𝑗|𝑘)
)

+𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

)

(31)

where 𝑈̄ is the control constraint matrix and 𝑈̄ = diag
{

𝑇 𝑑
𝑖,max, 𝛿𝑖,max

}

.
Set the number of iterations as 𝑙, the convergence accuracy as 𝜀, and 

the maximum number of iterations as 𝑙max. For problem 2, the steps of 
iterative DL-MPC method are summarized in Algorithm 1 [67]. 
Algorithm 1 Iterative DL-MPC method
Initialize: 𝑙 = 0, set 𝜀 > 0 and 𝐽 0

𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

= 0, 𝑗 ∈ [

𝑘, 𝑘 +𝑁𝑝 − 1
]

; 

repeat 
for all 𝑗 = 𝑘, 𝑘 + 1,⋯ 𝑘 +𝑁𝑝 − 1 do 
Calculate 𝑢𝑙𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) via (31); 

Generate the next state 𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘) via (22); 
Calculate 𝐽 𝑙+1

𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) by using 𝐽 𝑙+1

𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

=
𝑟
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢𝑖 (𝑘 + 𝑗|𝑘)
)

+ 𝐽 𝑙
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

, 𝑗 ∈
[

𝑘, 𝑘 +𝑁𝑝 − 1
]

;
end for

until ‖‖
‖

𝐽 𝑙+1
𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

− 𝐽 𝑙
𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

‖

‖

‖

< 𝜀 or 𝑙 = 𝑙max.

In the DL-MPC method, the actor network is used to approximate 
the optimal control law 𝑢∗𝑖 (𝑘 + 𝑗|𝑘), and the critic networks are used 
to approximate 𝜆∗𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

, where 𝜆∗𝑖 =
𝜕𝐽∗

𝑖
𝜕𝑒𝑖
, which represents the 

derivative of the optimal cost function 𝐽 ∗
𝑖  with respect to 𝑒𝑖. In the 

prediction horizon 𝑗 ∈
[

𝑘, 𝑘 +𝑁𝑝 − 1
]

, 𝑁𝑝 actor neural networks and 
𝑁𝑝 critic neural networks will be need to approximate 𝑢∗𝑖 (𝑘 + 𝑗|𝑘) and 
𝜆∗𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) at each step in the prediction horizon, respectively. 

In this paper, a radial basis function (RBF) neural network structure 
is adopted to realize actor networks and critic networks [68] and its 
diagram is shown in Fig.  9.

For 𝑗 ∈ [

𝑘, 𝑘 +𝑁𝑝 − 1
]

, each actor network is designed as: 

𝑢̂𝑙𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

= 𝑈̄𝛤

( 𝑐𝑎
∑

𝑚=1
𝑤[𝑚]

𝑎,𝑙 (𝑘 + 𝑗|𝑘)𝜑[𝑚] (𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

)

( 𝑇 ( ))

(32)

= 𝑈̄𝛤 𝑊𝑎,𝑙(𝑘 + 𝑗|𝑘) 𝛹 𝑒𝑖 (𝑘 + 𝑗|𝑘)
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and each critic network is designed as: 

𝜆̂𝑙𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

=
𝑐𝑐
∑

𝑚=1
𝑤[𝑚]

𝑐,𝑙 (𝑘 + 𝑗|𝑘)𝜙[𝑚] (𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

= 𝑊𝑐,𝑙(𝑘 + 𝑗|𝑘)𝑇𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

(33)

where 𝛤 (⋅) is tanh (⋅) and ‖tanh (⋅)‖ ≤ 1. Terms of 𝑐𝑎 and 𝑐𝑐 are 
the number of the center points of the hidden layer of the actor 
networks and the critic networks, respectively. Terms of 𝑤[𝑚]

𝑎,𝑙 (𝑘 + 𝑗|𝑘)
and 𝑤[𝑚]

𝑐,𝑙 (𝑘 + 𝑗|𝑘) are the weight vectors between the 𝑚th center point 
and the output layer of the 𝑗th actor networks and critic networks when 
the number of iterations is 𝑙, respectively, and 𝑤[𝑚]

𝑎,𝑙 (𝑘 + 𝑗|𝑘) ∈ R2, 
𝑤[𝑚]

𝑐,𝑙 (𝑘 + 𝑗|𝑘) ∈ R4. Terms of 𝜑[𝑚] (𝑒𝑖 (𝑘 + 𝑗|𝑘)
) and 𝜙[𝑚] (𝑒𝑖 (𝑘 + 𝑗|𝑘)

)

represent the activation function of the 𝑚th center point in the hid-
den layer of the actor networks and the critic networks, respectively. 
Terms of 𝑊𝑎,𝑙 (𝑘 + 𝑗|𝑘) and 𝑊𝑐,𝑙 (𝑘 + 𝑗|𝑘) denote the weight matrices 
of the 𝑗th actor networks and critic networks, respectively. Terms of 
𝛹
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) and 𝛷 (

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) are the basis vectors in the actor 

networks and the critic networks, respectively, and they can be denoted 
as follows: 
⎧

⎪

⎨

⎪

⎩

𝛹
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

=
(

exp−
‖

‖

‖

𝑒𝑖−𝑒1𝑖
‖

‖

‖

2
∕𝜅2 ;⋯ exp−

‖

‖

‖

𝑒𝑖−𝑒
𝑐𝑎
𝑖
‖

‖

‖

2
∕𝜅2

)

𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

=
(

exp−
‖

‖

‖

𝑒𝑖−𝑒1𝑖
‖

‖

‖

2
∕𝜅2 ;⋯ exp−

‖

‖

‖

𝑒𝑖−𝑒
𝑐𝑐
𝑖
‖

‖

‖

2
∕𝜅2

) (34)

where (𝑒1𝑖 ⋯ 𝑒𝑐𝑎𝑖
) and (𝑒1𝑖 ⋯ 𝑒𝑐𝑐𝑖

) are used to denote the hidden layer 
centroids of the actor networks and the critic networks, respectively, 
and 𝜅 = 1.1, 𝑐𝑎 = 𝑐𝑐 = 5.

The optimal control law 𝑢∗𝑖 (𝑘 + 𝑗|𝑘) satisfies: 
𝜕𝐽 ∗

𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
= 0 (35)

Combining (29), (30) and (35): 

𝑢∗𝑖 (𝑘 + 𝑗|𝑘) = − 1
2𝑅𝑖

(

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)

)𝑇
𝜆∗𝑖

(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

(36)

Let the right side of (32) and (36) be equal, the weight updating of 
the actor networks can be obtained as follows: 

𝑊 𝑝+1
𝑎,𝑙 (𝑘 + 𝑗|𝑘) =

(

𝛹
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

𝛹𝑇 (𝑒𝑖 (𝑘 + 𝑗|𝑘)
)𝑇

)−1
× 𝛹

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

×

⎛

⎜

⎜

⎜

⎜

⎝

𝛤−1

⎛

⎜

⎜

⎜

⎜

⎝

𝑈̄−1

⎛

⎜

⎜

⎜

⎜

⎝

− 1
2𝑅𝑖

(

𝜕𝑒𝑖(𝑘+𝑗+1|𝑘)
𝜕𝑢̂𝑙,𝑝𝑖

(

𝑒𝑖(𝑘+𝑗|𝑘)
)

)𝑇

×𝑊𝑐,𝑙(𝑘 + 𝑗 + 1|𝑘)𝑇

×𝛷
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

𝑇

(37)

where 𝑊 𝑝+1
𝑎,𝑙 (𝑘 + 𝑗|𝑘) denotes the weight matrix of the 𝑗th actor net-

work at the 𝑙th policy evaluation and the 𝑝th policy update, and 
𝑊𝑐,𝑙 (𝑘 + 𝑗|𝑘) denotes the weight matrix of the 𝑗th critic network at 
the 𝑙th policy evaluation. 𝑢̂𝑙,𝑝𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) denotes the output of the 

𝑗th actor network during the 𝑙th policy evaluation and the 𝑝th policy 
update.

Note that when updating the weight of the 𝑗th actor network, the 
output of the (𝑗 + 1)th critic network is need to be used. When 𝑗 =
𝑘 +𝑁𝑝 − 1, the weight updating of the (𝑘 +𝑁𝑝 − 1

)

th actor network is 
as follows: 

𝑊 𝑝+1
𝑎,𝑙 (𝑘 + 𝑗|𝑘) =

(

𝛹
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

𝛹
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)𝑇

)−1
× 𝛹

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

×
⎛

⎜

⎜

⎝

𝛤−1
⎛

⎜

⎜

⎝

𝑈̄−1
⎛

⎜

⎜

⎝

− 1
2𝑅𝑖

(

𝜕𝑒𝑖(𝑘+𝑗+1|𝑘)
𝜕𝑢̂𝑙,𝑝𝑖

(

𝑒𝑖(𝑘+𝑗|𝑘)
)

)𝑇

×2𝑃𝑖𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

𝑇

(38)
9 
By taking the derivative of (30) with respect to 𝑢∗𝑖 (𝑘 + 𝑗|𝑘): 
𝜕
(

𝑟𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
)

+ 𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
))

𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)

=
𝜕𝑟𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
)

𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
+
(

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)

)𝑇

×
𝜕𝐽 ∗

𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)

(39)

By taking the derivative of (30) with respect to 𝑒𝑖 (𝑘 + 𝑗|𝑘): 

𝜆∗𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

=
𝜕
(

𝑟𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
)

+ 𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
))

𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

=
𝜕𝑟𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
)

𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

+
( 𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

)𝑇 𝜕𝑟𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
)

𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)

+
( 𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

)𝑇( 𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
𝜕𝑢∗𝑖 (𝑘 + 𝑗|𝑘)

)𝑇

×
𝜕𝐽 ∗

𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)

+
(

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

)𝑇 𝜕𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)

(40)

Combining (39) and (40): 

𝜆∗𝑖
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

=
𝜕𝑟𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘) , 𝑢∗𝑖 (𝑘 + 𝑗|𝑘)
)

𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

+
(

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

)𝑇 𝜕𝐽 ∗
𝑖
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
=2𝑄𝑖𝑒𝑖 (𝑘 + 𝑗|𝑘)

+
(

𝜕𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
𝜕𝑒𝑖 (𝑘 + 𝑗|𝑘)

)𝑇
𝜆∗𝑖

(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

(41)

Let the right side of (33) and (41) be equal, the weight updating of 
the critic networks can be obtained as follows: 

𝑊𝑐,𝑙+1 (𝑘 + 𝑗|𝑘) =
(

𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)𝑇

)−1
𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

×

(

2𝑄𝑖𝑒𝑖 (𝑘 + 𝑗|𝑘) +
(

𝜕𝑒𝑖(𝑘+𝑗+1|𝑘)
𝜕𝑒𝑖(𝑘+𝑗|𝑘)

)𝑇

×𝑊𝑐,𝑙(𝑘 + 𝑗 + 1|𝑘)𝑇𝛷
(

𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)
)

)𝑇

(42)

where 𝑊𝑐,𝑙+1 (𝑘 + 𝑗|𝑘) is the weight matrix of the 𝑗th critic network at 
the (𝑙 + 1)th policy evaluation.

When 𝑗 = 𝑘+𝑁𝑝−1, the weight updating of the (𝑘 +𝑁𝑝 − 1
)

th critic 
network is as follows: 
𝑊𝑐,𝑙+1 (𝑗) =

(

𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)𝑇

)−1
𝛷
(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
)

×

(

2𝑄𝑖𝑒𝑖 (𝑘 + 𝑗|𝑘) +
(

𝜕𝑒𝑖(𝑘+𝑗+1|𝑘)
𝜕𝑒𝑖(𝑘+𝑗|𝑘)

)𝑇

×2𝑃𝑖𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘)

)𝑇 (43)

Then, the main procedures in iterative DL-MPC algorithm based on 
neural network are given in Algorithm 2. 

Remark 5. The convergence of the iterative DL-MPC algorithm is 
guaranteed, i,e., when the number of iterations 𝑙 → ∞, satisfying 
𝑢𝑙𝑖 → 𝑢∗𝑖 , 𝐽 𝑙

𝑖 → 𝐽 ∗
𝑖  and 𝜆𝑙𝑖 → 𝜆∗𝑖  [66,69]. Due to the limitation of 

calculation time, the maximum number of iterations and convergence 
accuracy need to be specified in advance in this paper. Define 𝑙max
as the maximum number of weight updates of critic network in each 
prediction horizon, 𝑝max as the maximum number of weight updates of 
actor network, 𝛥𝑊𝑎 (𝜀) and 𝛥𝑊𝑐 (𝜀) as the convergence thresholds of 
the weights of actor network and critic network, respectively.
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Algorithm 2 DL-MPC algorithm based on neural network
Input: The maximum iteration numbers 𝑙max and 𝑝max; the convergence 

thresholds 𝛥𝑊𝑎 (𝜀) and 𝛥𝑊𝑐 (𝜀); truck status at the initial moment;
Output: Optimal or sub-optimal control policy 𝑢∗𝑖 (𝑘|𝑘). 
1: Initialize the weight matrix of actor networks and critic networks, 
and set 𝑙 = 0;

2: repeat 
3: for all 𝑗 = 𝑘, 𝑘 + 1,⋯ 𝑘 +𝑁𝑝 − 1 do 
4: 𝑝 = 0;
5: repeat 
6: Calculate 𝑢̂𝑙𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) via (32); 

7: Calculate 𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘) via (22); 
8: Update the actor weights via (37) and (38); 
9: Set 𝑝 = 𝑝 + 1.
10: until 𝑝 = 𝑝max 𝑜𝑟

‖

‖

‖

𝑊 𝑝+1
𝑎,𝑙 (𝑘 + 𝑗|𝑘) −𝑊 𝑝

𝑎,𝑙 (𝑗)
‖

‖

‖

≤ 𝛥𝑊𝑎 (𝜀); 
11: Calculate 𝑢̂𝑙𝑖

(

𝑒𝑖 (𝑘 + 𝑗|𝑘)
) via (32); 

12: Calculate 𝑒𝑖 (𝑘 + 𝑗 + 1|𝑘) via (22); 
13: Update the critic weights via (42) and (43).
14: end for
15: return 𝑙 = 𝑙 + 1;
16: until 𝑙 = 𝑙max 𝑜𝑟 ‖

‖

𝑊𝑐,𝑙 (𝑘 + 𝑗|𝑘) −𝑊𝑐,𝑙−1 (𝑘 + 𝑗|𝑘)‖
‖

≤ 𝛥𝑊𝑐 (𝜀); 
17: Calculate 𝑢∗𝑖 (𝑘|𝑘) via (31) and apply it to the system; 
18: Set 𝑘 = 𝑘 + 1 and go back to 1.

Table 3
The parameters of trucks.
 Parameters Value Parameters Value  
 𝐶𝑡𝑓 0.003 𝐶𝑎𝑒𝑟𝑜 0.6  
 𝐴 10 𝜌 1.29 (kg m−3)  
 𝛼 1 𝐼𝑧 130421.8 (kg m2) 
 𝛾 44 𝑎 3.5 (m)  
 𝛽 737 𝑏 1.5 (m)  
 𝜀 33 𝑔 9.8 m∕s2  
 𝜏 5 𝐽𝑓 24 (kg m2)  
 𝜂𝑓 0.9 𝐽𝑟 48 (kg m2)  
 𝜂𝑐 0.4 𝑅𝑒 0.51 (m)  

Remark 6. The parameters 𝑙max and 𝑝max are set to be constants and 
independent of the prediction horizon 𝑁𝑝.

Remark 7. The RBF networks are employed as the function approxi-
mators for the actor and critic networks within the iterative DL-MPC 
scheme. The networks are trained online over each prediction horizon, 
not with a fixed offline dataset. At time instant 𝑘, the training samples 
are the error vectors {𝑒𝑖 (𝑘 + 𝑗|𝑘)

}𝑁𝑝−1
𝑗=0  generated by the system dynam-

ics (22) under the current policy, and the actor and critic weights are 
updated by the policy-iteration-based rules in (37)–(38) and (42)–(43), 
respectively. The RBF basis vectors 𝛹 (⋅) and 𝛷 (⋅) use Gaussian kernels 
and shape parameter 𝜅 = 1.1. Terms of 𝑐𝑎 = 𝑐𝑐 = 5 are set and 
the centers are kept fixed during online updates (Fig.  9, (32)–(34)). 
Convergence is determined by the preset iteration limits 𝑙max, 𝑝max, as 
well as the thresholds on weight changes in Algorithm 2.

5. Simulation and analysis

This section provides a simulation study on the fuel-saving control 
and computation time of the controller. A truck platoon consists of one 
leading truck and three following trucks. The parameters of trucks are 
shown in Table  3. The parameters of the controllers are shown in Table 
4 and the tire parameters are shown in Table  5. 

5.1. Speed optimization of the leading truck

Scenario 1 of slope road is shown in Fig.  10(a), which is composed of 
three parts, a flat stretch, an uphill stretch and a downhill stretch with 
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Table 4
The parameters of controllers.
 Parameters Value  
 𝑁𝑝 3  
 𝐻 20  
 𝛥𝑇 0.01 (s)  
 T𝑠 0.01 (s)  
 𝑄𝑖 105 × diag(5, 70, 50, 50) 
 𝑅𝑖 diag(0.06, 1.5 × 106)  
 𝑑𝑑𝑒𝑠 16 (m)  
 𝛤 ( ) tanh (𝑥)  
 𝑙max 4  
 𝑝max 4  
 𝛥𝑊𝑎 (𝜀) 10−2  
 𝛥𝑊𝑐 (𝜀) 10−2  

Table 5
The Tire parameters.
 Tire forces B C D E  
 𝐹 𝑥𝑓

𝑖 8.61 1.58 22053 0.5624  
 𝐹 𝑥𝑟

𝑖 8.61 1.58 44625 0.5624  
 𝐹 𝑦𝑓

𝑖 6.59 1.58 22503 −0.3028 
 𝐹 𝑦𝑟

𝑖 6.59 1.58 44625 −0.3028 

3◦ and −3◦, respectively. The curvature information is shown in Fig. 
10(b), where the curvature is 0.0025. In this paper, the road adhesion 
coefficient is 0.85.

Scenario 2 of slope road is shown in Fig.  11(a), which is composed 
of three parts, a flat stretch, a downhill stretch and an uphill stretch 
with −2◦ and 2◦, respectively. The curvature information is shown in 
Fig.  11(b), where the curvature is 0.002.

The profiles of the fuel-efficient velocity of the leading truck in two 
scenarios are shown in Fig.  10(c) and Fig.  11(c), respectively. The road 
speed limit 𝑣min and 𝑣max are 72 km∕h and 90 km∕h. It can be seen 
from Fig.  10(c) and Fig.  11(c) that the truck velocity does not exceed 
the speed limit under this road condition and meets the requirements 
of road speed limit.

5.2. Platoon control

5.2.1. Scenario 1
The initial longitudinal velocity of leading truck is 22 m∕s, the initial 

longitudinal velocities of the following trucks are 21 m∕s. Set the initial 
longitudinal spacing errors of the following trucks as −1 m, −2 m, −3 m, 
respectively. Both the initial lateral position errors and heading angular 
errors are 0. Fig.  12(a) shows the driving paths of the truck platoon 
on the expressway in Scenario 1, where the three following trucks can 
travel along the desired trajectory. Fig.  12(b) shows the longitudinal 
positions of the platoon. As shown in Fig.  12(b), the trajectories of the 
four trucks remain distinct throughout the entire simulation, with no 
overlap or intersection. This indicates that no collisions occurred within 
the platoon, ensuring longitudinal safe operation during the simulation. 
Fig.  12(c) shows the longitudinal velocities of the platoon, which can 
be seen from Fig.  12(c) that when the road conditions change, the 
longitudinal velocities of the following trucks are quickly consistent 
with the longitudinal velocity of the leading truck.

Fig.  13 shows the simulation results based on the iterative DL-MPC 
method. In Fig.  13(a), the maximum longitudinal spacing error of the 
platoon fluctuates within ±0.7 m, and finally tends to 0. Fig.  13(b) is 
the heading angle errors of the trucks, and the maximum deviation is 
not more than 0.025 rad, which meets the control requirements. Fig. 
13(c) shows the lateral position errors of the following trucks, and the 
maximum error is about 0.09 m.



S. Yu et al.

Fig. 10. Scenario 1: (a) scenario of slope road, (b) road curvature, (c) fuel-efficient velocity.

Fig. 11. Scenario 2: (a) scenario of slope road, (b) road curvature, (c) fuel-efficient velocity.

Fig. 12. DL-MPC in Scenario 1: (a) driving paths, (b) longitudinal position, (c) longitudinal velocities.

Fig. 13. DL-MPC in Scenario 1: (a) longitudinal spacing errors of following trucks, (b) angular errors of trucks, (c) lateral position errors of trucks.
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Fig. 14. DL-MPC in Scenario 2: (a) longitudinal position, (b) longitudinal velocities, (c) longitudinal spacing errors of following trucks.
Fig. 15. DL-MPC in Scenario 2: (a) angular errors of trucks, (b) lateral position errors of trucks, (c) computation time.
5.2.2. Scenario 2
The initial longitudinal velocity of the leading truck is 23 m∕s, the 

initial longitudinal velocities of the following trucks are 22 m∕s. Set the 
initial longitudinal spacing errors of the following trucks as 1 m, 2 m, 
3 m, respectively. Both the initial lateral position errors and heading 
angular errors are 0.

Fig.  14(a) shows the longitudinal positions of the platoon. As illus-
trated in Fig.  14(a), the trajectories of the four trucks remain distinct 
throughout the entire simulation, without any overlap or crossing. This 
indicates that no collisions occur within the platoon, thereby ensuring 
longitudinal safety. Fig.  14(b) shows the longitudinal velocities of the 
platoon. It can be observed from Fig.  14(b) that when the road condi-
tions change, the longitudinal velocities of the following trucks quickly 
converge to that of the leading truck. In Fig.  14(c), the maximum 
longitudinal spacing error of the platoon fluctuates within ±0.6 m and 
eventually tends to zero. Fig.  15(a) presents the heading angle errors 
of the trucks, where the maximum deviation does not exceed 0.019 
rad, satisfying the control requirements. Fig.  15(b) shows the lateral 
position errors of the following trucks, with a maximum error of about 
0.07 m. From Fig.  15(c), it can be seen that the computation time 
remains less than the sampling time.

5.3. Comparison experiments

RL methods have been increasingly applied to truck platoon control 
problems in recent years, owing to their ability to optimize decision-
making in complex environments. RL is particularly effective in han-
dling high-dimensional state spaces and nonlinear system behaviors, 
making it well-suited for the challenges associated with coordinated 
control of multiple trucks. Therefore, to demonstrate the superior con-
trol performance of the proposed method, comparison experiments are 
conducted using the DMPC algorithm and the TD3 algorithm [70] in 
Scenario 1.

Fig.  16 shows the simulation results based on DMPC. As shown in 
Fig.  16(a), the longitudinal position error of the platoon is minimal, 
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indicating good longitudinal tracking performance. Figs.  16(b) and 
16(c) illustrate the heading angle error and lateral position error of 
the platoon, respectively, further demonstrating the effective control 
performance of the DMPC algorithm.

In contrast, Fig.  17(a) presents the longitudinal spacing error under 
the TD3 algorithm. It can be observed that the follower trucks exhibit 
significant fluctuations in position error, which do not converge to 
zero. This suggests poor performance in longitudinal control. Figs. 
17(b) and 17(c) show the heading angle error and lateral position 
error, respectively. While the heading angle error experiences minor 
oscillations at the initial stage and during curve negotiation, the lateral 
position error exhibits a more noticeable fluctuation of approximately 
0.044 m at the beginning. Although the platoon does not encounter any 
critical safety issues during the simulation and both the heading angle 
and lateral position errors eventually converge to zero, the observed 
oscillations indicate potential safety risks, which are unacceptable in 
practical applications. It is worth noting that, unlike MPC, which explic-
itly incorporates system constraints into its optimization framework, RL 
lacks inherent mechanisms for constraint enforcement.

Fig.  18 shows the comparison of the control performance of the 
three methods. Fig.  18(a) illustrates the longitudinal spacing errors of 
the three following trucks under the three control algorithms. As shown 
in the figure, the DMPC algorithm yields the smallest longitudinal 
spacing errors across all trucks, indicating better tracking performance. 
In contrast, the TD3 algorithm results in significantly larger errors, par-
ticularly for the second following truck, whose maximum longitudinal 
deviation reaches approximately –6.1 m. Figs.  18(b) and 18(c) present 
the angular error and lateral position error of the first following truck 
as it enters the curve under the three control algorithms. As shown 
in Fig.  18(b), the DL-MPC and DMPC algorithms exhibit comparable 
performance, whereas the TD3 algorithm results in noticeably larger 
angular errors. In Fig.  18(c), although the TD3 algorithm appears to 
produce smaller lateral position errors, a comparison with Fig.  17(c) 
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Fig. 16. DMPC: (a) longitudinal spacing errors of following trucks, (b) angular errors of trucks, (c) lateral position errors of trucks.
Fig. 17. TD3: (a) longitudinal spacing errors of following trucks, (b) angular errors of trucks, (c) lateral position errors of trucks.
Fig. 18. Comparison of the control performance of the three methods: (a) longitudinal spacing errors of following trucks, (b) angular error of the 1th truck, 
(c) lateral position error of the 1th truck. (In the boxplot, the five values from the top to the bottom in a box denote the maximum, the third quartile, sample 
median, the first quartile, and the minimum value of the data set.).
reveals that the truck exhibits significant oscillations during the ma-
neuver. These oscillations, despite the smaller error, may compromise 
the safety of the truck platoon.

Fig.  19 shows the computation time of the three methods. The 
values of three methods are shown in Table  6. It can be seen that the 
computation time of the DL-MPC algorithm is less than the sampling 
time 𝑇𝑠. The computation time of the DMPC algorithm is much larger 
than the sampling time. It is worth noting that the TD3 algorithm 
exhibits a significantly shorter computation time, primarily because 
it does not rely on solving optimization problems online. Instead, it 
utilizes a trained policy network to make rapid control decisions.

Therefore, by comparing the control performance and computation 
time across the three methods, the proposed method demonstrates 
superior overall performance, achieving a favorable balance between 
control performance and computational efficiency.
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Table 6
Comparison of the computation time of the three methods.
 Methods Minimum Maximum Average  
 DL-MPC 1.1 (ms) 7 (ms) 1.45 (ms)  
 DMPC 4.8 (ms) 332.3 (ms) 52.65 (ms)  
 TD3 4.7 × 10−3 (ms) 94 × 10−3 (ms) 8.23 × 10−3 (ms) 

5.4. Fuel consumption of platoons

This part presents the fuel consumption for speed planning, constant 
speed, experience-based speed setting [31], and speed planning based 
on RL [34], respectively, to demonstrate the efficiency of the fuel-
saving strategy in Scenario 1. Figs.  20 to 23 show the platoon control 
results under three different speed scenarios.

Fig.  20 shows the longitudinal velocities of the platoon under 
three different scenarios. From Fig.  20, it can be observed that as the 
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Fig. 19. Comparison of the computation time of the three methods: (a)–(b) computation time based on DL-MPC, (c)–(d) computation time based on DMPC, 
(e)–(f) computation time based on TD3.
Fig. 20. Longitudinal velocities: (a) constant speed, (b) speed setting, (c) RL-speed planning.
Fig. 21. Longitudinal spacing errors of following trucks: (a) constant speed, (b) speed setting, (c) RL-speed planning.
leading truck’s velocity changes, the following trucks effectively track 
the curve. Fig.  21 presents the variation in the longitudinal spacing 
errors between each following truck and the leading truck. The results 
14 
indicate that the longitudinal spacing errors of the following trucks con-
verge quickly, demonstrating that the controller ensures each following 
truck maintains good longitudinal tracking performance. Figs.  22 and
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Fig. 22. Angular errors of trucks: (a) constant speed, (b) speed setting, (c) RL-speed planning.
Fig. 23. Lateral position errors of trucks: (a) constant speed, (b) speed setting, (c) RL-speed planning.
23 display the angular errors and lateral position errors for each truck 
in the platoon under the three different scenarios. From these results, 
it is evident that the angular and lateral position errors of all trucks are 
small, thus meeting the control objectives.

Note that the superiority does not lie in the control performance. 
Instead, the real difference shows up in the fuel consumption, namely, 
the new method is more energy efficient.

Figs.  24 presents a comparative analysis of engine operating point 
distributions for the truck platoon under different strategies. As shown 
in Figs.  24(a), the proposed speed planning method results in most 
engine operating points concentrating within the region of minimum 
fuel consumption, demonstrating its effectiveness in optimizing power 
output and improving fuel economy.

In contrast, Fig.  24(b) illustrates the engine operating point distri-
bution under a constant-speed driving strategy. Under this strategy, 
trucks require additional driving torque to maintain speed during uphill 
climbs due to gravitational resistance, while braking is needed downhill 
to prevent overspeeding. Consequently, the engine frequently operates 
outside the optimal efficiency zone.

Figs.  24(c) and 24(d) depict the engine operating point distributions 
for experience-based speed setting and RL-based speed planning meth-
ods, respectively. The experience-based method, relying on empirical 
formulations, lacks adaptive adjustment capabilities for real-world driv-
ing conditions, leading to a scattered distribution of engine operating 
points and suboptimal efficiency. Meanwhile, the RL approach, which 
can be viewed as an adaptive learning extension of the proposed speed 
planning method, autonomously adjusts speed strategies based on road 
conditions and powertrain demands, driving engine operation closer 
to the optimal fuel consumption region. A comparison of Figs.  24(a) 
to 24(d) confirms that the proposed speed planning method achieves 
superior energy-saving performance.

Remark 8. Note that the three trucks share identical physical param-
eters except for slight differences in mass, their operating points differ 
15 
marginally because the following trucks must compensate for spacing 
and tracking errors relative to the leading truck. This explains why their 
engine points cluster closely in the same high-efficiency region in Fig. 
24.

Fig.  25 illustrates the fuel consumption histograms for the four 
methods. Based on speed planning fuel consumption data, it is clear 
that despite the greater mass of 1th following truck compared to the 
leading truck, there is still a fuel efficiency of about 5.1%, due to the 
significantly lower air resistance coefficient. 2th following truck can 
save about 7.14% on fuel compared to the first following truck, even 
with the same load. The air resistance coefficients of 2th following 
truck and 3th following truck are almost identical [71,72]. The fuel 
consumption slightly increases when the 3th following truck has a 
greater mass than 2th truck. Compared to total fuel consumption, speed 
planning can save 3.43%, 11% and 2.39% compared with constant 
speed, speed setting and RL-speed planning, respectively.

6. Conclusion

In order to balance the fuel-saving and safety of truck platoons, this 
paper constructed a hierarchical strategy, including a speed planning 
layer and a platoon control layer. Firstly, the fuel-efficient velocity is 
determined based on the fuel consumption model, taking into account 
the tracking ability of the following trucks. Secondly, the DL-MPC 
was employed considering longitudinal and lateral coupling dynamics. 
Finally, co-simulation results revealed that the fuel consumption of 
the platoon based on speed planning was lower than that of constant 
speed, experience-based speed setting and RL-speed planning, where 
the energy-saving effect was illustrated by the fuel consumption char-
acteristics of the engine. In addition, the performance of the iterative 
DL-MPC method was compared with the DMPC and TD3 methods in 
ensuring safety control of the platoon. It should be noted that the 
method proposed in this paper achieves a balance between the control 
performance and the computation time.
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Fig. 24. Engine working point distribution map: (a) speed planning, (b) constant speed, (c) speed setting, (4) RL-speed planning. (The 𝑦-axis indeed represents 
the engine torque, the 𝑥-axis is the engine speed, and the background contour map indicates the fuel consumption rate.).
Fig. 25. Diagram of fuel consumption.
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Beyond the specific application to truck platooning, the proposed 
DL-MPC framework has the potential to be extended to other coop-
erative control scenarios, such as automated transportation systems, 
smart grids, and unmanned aerial vehicle (UAV) platoons. In future 
work, platoon control will be investigated under more complex traf-
fic environments, taking into account mixed traffic conditions, traffic 
signals, and uncertainties arising from vehicle dynamics. These studies 
aim to further enhance the robustness and practical applicability of the 
DL-MPC approach in real-world cooperative control systems.
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