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Connectivity and autonomy stand out as two highly promising technologies for fuel efficiency in the realm of
automated transportation. This paper addresses the issue of fuel consumption in autonomous truck platoons and
introduces a hierarchical framework. Within the speed planning layer, a fuel consumption model for the leading
truck is formulated to compute velocity profile. Simultaneously, a distributed learning-model predictive control
(DL-MPC) method is employed to ensure the cohesive movement of a truck platoon in a predefined formation.
The co-simulation platform, leveraging Trucksim and Simulink, provides a comprehensive environment for
assessing and validating the proposed control strategy. Comparison experiments validate the effectiveness of
the proposed method. Distributed model predictive control (DMPC) and two-delay deep deterministic policy
gradient (TD3) algorithms are conducted to illustrate the advantages of the controller in terms of control
performance and computation time. The speed planning method outperforms constant speed, experience-based
speed setting, and reinforcement learning-based speed planning in terms of fuel efficiency. Furthermore, the
energy-saving effect of the proposed strategy is verified from the perspective of engine fuel characteristics.
Therefore, the framework proposed in this paper ensures excellent control performance and fuel economy of
truck platoon while reducing the computation time of the controller.

1. Introduction control but overlook speed planning and energy efficiency. In contrast,

the proposed work in this study comprehensively addresses four key

As the logistics industry develops, the number of trucks is increas-
ing, resulting in higher fossil fuel consumption and emissions [1].
Urban fine particulate concentration in China reaches 51 micrograms/
cubic meter, which is six times greater than that of the United States,
and China aims to reduce CO,/GDP by 60%-65% below 2005 by
2030 adhering to The Paris Agreement. There is no doubt that lower
fuel consumption leads to cost savings for truck platoons, and it also
reduces emissions [2,3]. Platooning has the potential to improve road
safety by significantly reducing reaction times and minimizing for the
likelihood human error within the platoon, which can decrease rear-
end crashes [4]. Currently, the focus of research lies in minimizing
energy consumption while ensuring the safety of truck platoons [5,6].
The comparison between the proposed work and existing studies are
summarized in Table 1. As shown in the table, studies [3,7-11] have
achieved fuel saving and longitudinal control but exhibit shortcomings
in computational efficiency and lateral control. Studies [12-15] focus
on both longitudinal and lateral control but do not address compu-
tational efficiency and speed planning. Meanwhile, studies [16-19]
explore computational efficiency and both longitudinal and lateral
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aspects — computational efficiency, fuel consumption, longitudinal con-
trol, and lateral control - effectively filling a critical gap in existing
research.

1.1. Motivation

Although extensive research has been conducted on truck platoon-
ing control, several critical gaps remain. First, although most existing
works focus primarily on longitudinal control for fuel efficiency [3,20],
the coupling between longitudinal and lateral dynamics should not
be neglected under real-world driving conditions. Second, distributed
model predictive control (DMPC) has been widely adopted [16], yet
its high computational burden poses challenges for large-scale real-
time applications. Third, speed planning strategies for the leading
truck often fail to account for the dynamic constraints of follow-
ing trucks [21], resulting in impractical trajectories that cannot be
reliably executed. These gaps highlight the necessity of developing
a unified control framework that (i) explicitly accounts for coupled
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Table 1

Comparing the proposed work with previous studies.
Studies Computational Fuel Longitudinal Lateral

efficiency consumption control control

[3,7-11] X v v x
[12-15] x x v v
[16-19] v X v Vv
Proposed work v/ v/ v v

longitudinal-lateral dynamics, (ii) enhances the computational effi-
ciency of DMPC-based methods for real-time implementation, and (iii)
integrates speed planning with the physical tracking capabilities of
following trucks.

Motivated by these challenges, this study addresses truck platooning
control by jointly considering fuel economy, coupled longitudinal-
lateral dynamics, and computational efficiency. A two-layer control
framework is designed, with the upper layer focused on speed planning
for the leading truck, aimed at fuel-efficient speed profiles. With the
lower layer, i.e., the platoon control layer, the distributed learning-
model predictive controller (DL-MPC) is designed to ensure platoon

safety.
1.2. Contributions

This paper makes several key contributions, which are outlined as
follows:

(1) This paper proposes a speed planning strategy for the leading
truck that incorporates both road information and the tracking capa-
bility of following trucks. The proposed approach explicitly integrates
the dynamic response limits of following trucks into the speed planning
process, thereby improving overall fuel efficiency and safety of the
platoon.

(2) This paper develops a DL-MPC framework for longitudinal and
lateral control of truck platoons, which represents a novel integration
of traditional control methods and artificial intelligence. The proposed
framework ensures efficient, safe, and coordinated movement of truck
platoons in dynamic environments. This innovative approach enhances
the system’s ability to respond to real-time changes in traffic and road
conditions.

(3) The proposed method retains the control performance of tra-
ditional DMPC algorithm while possessing the efficient solving per-
formance of neural networks. Comparing with DMPC and two-delay
deep deterministic policy gradient (TD3) algorithms, the proposed
method can guarantee the control performance and reduce the com-
putation time.

1.3. Paper organization

The paper proceeds as follows: In Section 2, the relevant works
are introduced. In Section 3, the longitudinal and lateral coupling
dynamics model of trucks are established, a fuel consumption model
of the leading truck is established, the platoon model and the control
objectives are proposed, respectively. In Section 4, speed planning
program of the leading truck is designed and a DL-MPC algorithm is
designed. The tracking control performance and the fuel consumption
of the platoon are presented in Section 5. Section 6 concludes the paper.

2. Related work

The analysis of fuel consumption in truck platoons has been ex-
tensively studied and can be divided into three primary approaches:
vehicle spacing, traffic oscillation and speed planning [22]. In vehicle
spacing approach, the correlation between the air resistance coefficient
and the distance between the trucks is presented in [23,24]. These
studies indicate that the average resistance of the platoon decreases
as the spacing between trucks narrows, enabling greater fuel savings

with reduced spacing [23]. In [24], the relationship between fuel
consumption and vehicle gap is studied, which shows that the fuel
saving rate can reach 15% when the gap is maintained at 4.7 m. The
traffic oscillation method examines fuel consumption in scenarios with
frequent accelerations. In [25], in order to avoid unnecessary braking
and acceleration during truck traveling, the minimum acceleration of
the truck from static to set speed is studied. A reinforcement learn-
ing (RL) approach to fuel consumption analysis in traffic oscillation
scenarios is presented in [26].

Speed planning approaches include methodologies such as dynamic
program, back-step control, model predictive control and RL. In [27],
a novel development of an ecological driving system for traveling a
vehicle on roads with up—down slopes is presented. In [28], a coop-
erative control strategy is presented that takes into account preview
information, which can achieve fuel savings of up to 14% on a steep
descent compared to the adaptive cruise control system. In [29], a
control objective is to maximize fuel economy by controlling a safe
following distance or cruising at the optimum speed under constrained
driving torque conditions. In [30], dynamic programming is used to cal-
culate the optimal fuel-efficient speed of the platoon, and a distributed
model predictive control framework is developed to control the trucks
in real time. The results show that the fuel consumption of the following
trucks can be reduced by 12%. A two-level hierarchical framework
for a truck platoon coordination has been presented in [31], which
designs a discrete-time back-step control law based on a nonlinear
vehicle model that considers road gradient and vehicle heterogeneity,
and strengthens the control law with a novel string stability criterion.
In [32], a distributed model predictive control method is designed for
the fuel-efficiency of heavy-duty trucks, and the fuel saving of the
proposed control strategy is studied by simulation. In [33], a low-cost
predictive cruise control method is presented. The method achieves
energy savings of 8% to 10% compared to conventional adaptive cruise
control when testing on a real truck test platform. In [34], a RL
approach is used to train vehicles to keep safe spacing and reduce fuel
consumption by setting the reward function.

Most of the previous studies have focused on speed planning and
energy-saving control for the longitudinal dynamics of the platoons [35].
However, in practical applications, lateral dynamics should also be
considered in addition to longitudinal dynamics. A multi-objective
integrated control structure is designed to coordinate lateral and lon-
gitudinal motion control in [36], encompassing a global cooperative
control layer, a control allocation layer, and an action execution layer.
The dynamics model of the vehicle’s longitudinal and lateral coupling
characteristics is established, and the nonlinear controllers for longi-
tudinal and automatic steering based on nonlinear model predictive
control are designed, respectively [37]. Based on the six-degree-of-
freedom vehicle dynamics model, a new integrated control system for
longitudinal, lateral and vertical is proposed in [38]. The system is
based on model predictive control and can also consider operability.

Truck platoons usually operate in complex traffic environments
rather than isolated highways. Platoon control must handle additional
challenges, including mixed traffic with human-driven vehicles, uncer-
tain driver behaviors, traffic signals, and disturbances from commu-
nication. Some studies have addressed some of these issues, such as
merge—diverge coordination [39-41], multi-platoon cooperation [42,
43], and the influence of road surface [44,45].

In addition, communication is an another critical factor. Communi-
cation delays have been extensively studied [46,47]. More challenging
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communication scenarios, such as packet loss, topology switching, and
denial-of-service (DoS) attacks, have also been investigated, where
adaptive and switching-based control laws were designed to maintain
tracking performance and safety [48-50]. Some works propose dis-
tributed detection and recovery mechanisms, as well as security-aware
topology reconfiguration strategies, to enhance resilience against dis-
turbances [51,52]. These studies suggest that extending platoon control
strategies to account for complex traffic interactions, communication
uncertainties, and security threats is essential for practical deployment.

Due to the strong nonlinearity of the longitudinal and lateral dy-
namics coupling model, the model predictive control has a huge com-
putational burden when solving the optimization problems, and the
real-time performance of the platoon control cannot be guaranteed.
In [53], a simplified dynamic model is obtained by ignoring the cou-
pling component of the longitudinal driving force in the lateral dynam-
ics, resulting in a 9.6% reduction in time. Moreover, a dual-mode DMPC
strategy is proposed in [54], which can not only significantly reduce the
computation time and save communication resources, but also ensure
the iterative feasibility and stability of the proposed algorithm.

3. Problem setup

In this section, firstly, the longitudinal and lateral coupling dynam-
ics model of the truck is established. Secondly, the fuel consumption
model of the leading truck is established. Then, the longitudinal speed
of the leading truck is taken as the expected speed of the platoon.
Finally, the control objectives are proposed. Considering a truck pla-
toon consists of N trucks travels on a road, where the leading truck
is numbered as 0, and the following trucks are sequentially numbered
from 1-+- N — 1. It is assumed that the communication network is
completely reliable, i.e., there is no channel fading, packet dropout,
or delay.

The hierarchical control scheme is shown in Fig. 1. The intelligent
connected vehicles (ICV) achieve dual objectives of fuel efficiency
optimization and safety control through the collaboration between
the leading truck and the following trucks. The leading truck utilizes
vehicle to infrastructure (V2I) technology to obtain road information
and combines a powertrain model to compute an energy-efficient ref-
erence speed. Meanwhile, the following trucks leverage vehicle to
vehicle (V2V) communication to share real-time state data and employ
distributed controllers to adjust their speed and spacing, ensuring both
longitudinal and lateral safety. By integrating information exchange
with coordinated control algorithm, the system enables the platoon to
operate with enhanced energy efficiency and safe driving performance.

3.1. Truck dynamics

A classical three-degree-of-freedom model [55] is adopted, in which
the motion of the truck in the longitudinal, lateral and yaw directions
are considered. The first-principle model of the ith truck is as follows:

m0¥ —mv)@; = F/ cosé; — F* siné; + F¥" — F/

m0) —mv¥p; = FY sing; + F cos s, + F" '6))

I7p; = (F’.Xf sin; + F/ cos 5,-) a;— F"b,
where v%, v} and ¢; are the longitudinal velocity, lateral velocity, yaw
angle rate of truck. The term of m; is the mass of truck, I7 is the moment
of inertia around z axis, g; and b; are the distances from front axle and
rear axle to mass center, §; is the lateral control input representing
steering angle of the front wheel, F,.xf , FY, F,.yf , F" and Ff are the
longitudinal force of front wheel, longitudinal force of rear wheel,
lateral force of front wheel, lateral force of rear wheel and the travel
resistance of the truck, respectively.

Wheel force analysis is shown in Fig. 2 and the dynamics of the
wheels are:
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where a)i/ " and o/ are the angular velocity of front and rear wheel; Jif
and J! are the moment of inertia of front and rear wheel; T,.d is the
longitudinal control input representing the torque of rear wheel; R, is
the wheel rolling radius.

Combining (1) and (2), a five-degree-of-freedom (5-DOF) dynamic
model of trucks [56] is established as follows:

x Y. Fin cosﬁ,—l—"yf sin§i+FiX’—F‘,f
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v} = —vip; + —

(FX/ sinb',+Fyf cosb',)a,—F.yrb,

s 1 ! 1 3)
bi = Iz (
S T ReE
@& = t—"1—

i /

i
d

o = TR

i J[’

Fig. 3 shows the 5-DOF dynamics model of trucks. The Pacejka tire
model [57] is applied in this paper, in which the tire force can be
calculated by

F (y) = Dsin(C arctan (By — E (By — arctan (By)))) 4)

where B, C, D and E are the parameters of the tire, the input variable
x is the slip ratio or the slip angle, and the output variable F (y) is the
longitudinal tire force or the lateral tire force, respectively.

Note that the planar motion of trucks is considered, and the influ-
ence of roll and pitch is neglected. The load distribution between the
front and rear wheels is not taken into account, and the steering angles
of the left and right wheels are assumed to be equal.

To validate the effectiveness of the 5-DOF dynamic model, a com-
parative analysis is conducted between the model’s outputs and those
generated by TruckSim under identical input conditions. The input
signals include a constant driving torque of 1000 N m and a sinusoidal
front wheel steering angle with an amplitude of 0.01 rad. Note that
the torque value of 1000 N m is chosen because it falls within the
typical range of heavy-duty truck powertrains [58]. The purpose of
this setting is to provide a realistic but non-extreme driving condition
for validating the proposed 5-DOF dynamic model, rather than to
investigate performance limits. The simulation results are presented in
Fig. 4, where Figs. 4(a)-(d) show the front wheel steering angle, the
longitudinal and lateral velocity, yaw rate, respectively.

To quantitatively evaluate the model fitting, three error metrics are
employed: the Mean Absolute Error (MAE), the Root Mean Square Error
(RMSE), and the coefficient of determination (R%). MAE measures the
average absolute deviation between the predicted and measured values,
providing a direct indication of the typical error magnitude, with units
identical to the original data. RMSE emphasizes larger deviations by
squaring the errors before averaging and taking the square root, re-
flecting the model’s overall accuracy in the presence of occasional large
errors. The term of R? is a dimensionless indicator that represents the
proportion of variance in the measured data explained by the model,
where values closer to 1 indicate stronger agreement. By combining
absolute error metrics (MAE, RMSE) with the relative goodness-of-fit
(R?), allows for a comprehensive assessment of the model’s numerical
accuracy and trend consistency, a comprehensive assessment of the
model’s numerical accuracy and trend consistency is achieved, thereby
strengthening the credibility of the validation results. The performance
evaluation of model fitting is summarized in Table 2.

The results indicate that under the same input conditions, the output
trends of the 5-DOF dynamic model closely match those of TruckSim,
with small discrepancies. This demonstrates that the proposed model
effectively captures the longitudinal and lateral motion characteristics
of commercial trucks, making it suitable for the controller design.
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Fig. 1. The diagram for balancing fuel efficiency and safety control of the platoon.

3.2. Fuel consumption model of the leading truck

The fuel consumption of the truck on the slope is mainly related to
the mass and the longitudinal speed. Planning the speed of the leading
truck not only reduces its own fuel consumption but also enables
the following trucks to track its speed, thus achieve the fuel-saving
objective of the platoon. Fig. 5 shows the longitudinal dynamics of the
leading truck on a slope.

Assume that any momentary variations in the performance of the
engine and mechanical power can be disregarded [34]. Then, the
dynamics model of the leading truck on the slope can be expressed as

follows:
B0 _
dr ~©
dv, r ®)
m()? =Le0 — F()

where s, and v, are the position and speed of the leading truck. Note
that F, is the force provided by the engine, F({ = Fir0+ Faero0+ Fara o
in which F/, F,,,o and F,,, are rolling resistance, air resistance
and slope resistance, and note that F,;o = C,;omygcost, Fyn0 =
% /’Cam,oAUg, Fgp00 = mog sin 0. The term of C,  is the rolling resistance
coefficient of the leading truck, C,,,,, my, and A are the air resistance
coefficient, the mass, and the windward aero of the leading truck,
respectively. The term of p is the air density, g and 6 are gravity
acceleration and slope angle.

The mechanical power of trucks needs to overcome the effect of
gravity, and the fuel consumption of trucks is closely related to the

X mechanical powertrain [59]. The mechanical powertrain of the leading
truck can be expressed as follows:

Fig. 3. The five-degree-of-freedom dynamics model of trucks.

P = (Faero,O+Fgra,0+th,0+Fe,O) o) (6)
The fuel consumption of the truck can be described as:
Table 2
. _ a

Performance evaluation of model fitting. Efpor = _ﬂ (c-e-T+P/y) @
Results MAE RMSE R? 4
Front wheel steering angle 031x10- (rad) 037x 10~ (rad) 0.9971 where E fuel and P are the fuel consumption rate and mechanical power
Longitudinal velocity 0.025 (m/s) 0.037 (m/s) 0.9997 of the truck, « is the mass ratio of fuel to air, y is the calorific value of
Lateral velocity 6.83x 107 (m/s) 7.83x 107 (m/s) 0.9798 typical diesel, §, o, € and 7 are the friction coefficient, engine speed,
Yaw rate 223% 1073 (rad/s)  2.48x 107 (rad/s)  0.9731

exhaust volume and conversion factor of the engine. The term of »
is the efficiency parameter, and 4 = 7, - 5., in which 7, and 5, are
the efficiency parameters of the engine and the transmission system,
respectively.
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Fig. 4. Model validation experiment: (a) front wheel steering angle, (b) longitudinal velocity, (c) lateral velocity, (d) yaw rate.

aero

i

Fig. 5. The longitudinal dynamics model of the leading truck on a slope.

Remark 1. The actual fuel consumption of trucks is influenced by nu-
merous external factors such as the tread and pressure of tire, weather
conditions, density and humidity of air, fuel is also consumed by diesel
engines when idling [27], which is almost negligible. For the sake of
simplicity, in this paper, a relatively straightforward fuel consumption
model is adopted that does not account for idling fuel consumption.

3.3. Platoon model

In order to accurately follow the required reference path, onboard
sensors are essential for providing relative positional information be-
tween trucks, as well as between the truck and reference path.

To showcase varied platoon performances, truck platoon control
has developed several spacing policies including constant spacing pol-
icy (CSP), constant time headway policy, and variable time headway
policy [60]. To prevent the gap between trucks from amplifying as
their speed increases, which results in greater fuel consumption, CSP

Leading Truck

Fig. 6. The distance diagram of the truck platoon.

and predecessor-leader following information flow topology [61] are
adopted in this paper.

A truck platoon is shown in Fig. 6, where s; and s;_; are the
longitudinal positions of the ith following truck and the (i — 1)th
following truck, s, and d,,, are the longitudinal position of the leading
truck and the desired spacing, respectively.

Fig. 7 illustrates the configuration of the lane-keeping model, where
e/ represents the longitudinal position error, L is the preview distance,
e/ and ¢/ are the lateral position error and heading angle error,
respectively, and R is the radius of the curve.

Define spacing error of the ith truck as:

8P=S-—
i i

(SO - iddes) (8)
Define heading error of the ith truck as:
el =¢,— o 9

where ¢, and ¢, correspond to the tangential angle of lane and the
actual truck heading angle.
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The term of ¢ is defined as lateral position error:
5V — @ Yy .
el = u;‘ei —v; — Lo, 10)

Combining (3), (8), (9) and (10), the integrated platoon model is
as follows:

vy,  FYcoss=Fsing+F—F/
U =0;; + f "
Xf o r
o) = —Ux(p- " F; smSlJrFly cos§,+Fly
i il m;
L (Fixf sin§i+1"iyf cos&i)a,—F"Wb,
b = e
i
TR, F*/
W = LT twl [€RD)
i g7
i
i = T’dewFX"
i T
e'f =v; -,
e'?' = U;.‘e?’ —v; — Lg;
Qo
€ =Pg— @

Remark 2. The above problem formulation is developed under some
assumptions, including homogeneous trucks, reliable communication,
and known road geometry, with the application scenario restricted to
highway environments. These assumptions are deliberately made to
highlight the essential control objectives of platoon and to establish
an optimization framework. Such a baseline setting facilitates a clear
analysis of the effects of DMPC and its learning-based extension on
platoon performance, and it also provides methodological insights that
can be extended to more complex and uncertain traffic environments
in future work.

3.4. Control objectives of truck platoons

This paper aims to address the problem of fuel efficiency as well
as cooperative control of truck platoons using a hierarchical control
structure. The objectives are as follows:

3.4.1. The objective of fuel saving

For the leading truck, fuel consumption is modeled by combining
road information and the tracking capability of the following trucks,
aiming to generate a reference speed profile for the truck platoon that
minimizes fuel consumption, i.e., minimize E,,.

3.4.2. The objectives of platoon control

(1) The longitudinal position of the following trucks in the platoon
satisfies the desired spacing policy, i.e., the longitudinal spacing error
is minimized:

minimize Hs[ - (50 —i- ddes) (12)

2
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(2) The velocity of the ith following truck tracks the velocity of the
leading truck, and the longitudinal velocity error between the following
trucks and the leading truck is minimized:

2
X

0 13)

minimize ”UIY —-v

2
where vj and v} are the longitudinal velocities of the leading truck and
the ith following truck, respectively.

(3) The expected lateral position error e] and heading angle error
e? are minimized:

o . . y 2
minimize ” e H

3 a4

minimize ” e’ Hz

N

. Controller design

In this section, the task of reducing fuel consumption, and safety of
truck platoons are split into two layers. To provide a clear overview
of the proposed methodology, the overall framework of the truck
platoon control strategy is illustrated in Fig. 8. The framework adopts
a hierarchical scheme that integrates DL-MPC. As shown in the figure,
the upper layer is responsible for speed planning of the leading truck,
while the lower layer employs distributed controllers for each following
truck to ensure safety. The actor—critic networks are embedded in the
DL-MPC scheme to enhance prediction and control efficiency, thereby
improving both fuel economy and platoon stability.

4.1. Speed planning of the leading truck

Considering the following capability of the following trucks, the
speed planning of the leading truck is carried out, and the following
trucks follow the speed of the leading truck to achieve the purpose
of fuel saving. The position and speed of the truck are expressed as
x = [s,v]", and the power of the engine is selected as the control input
u.

Define the output as:

y=Is, 0" 15)

Denote the sampling time as AT, the discrete form of (5) can be
expressed as follows:

x(h+1) =g (x(h),u(h)
16
{ y(h) = x (h) 16
The control sequence in the prediction horizon is defined as:
U(h) = {u(h|h),...,u(h+ H — 1|h)} 17

where H is the prediction horizon within the speed planning layer, and
note that h + j|h denotes the predicted value of the time instant & for
the time instant A + j.

To determine the optimal economic speed for the leading truck,
problem 1 need to be solved, which aims to find the speed that
minimizes fuel consumption. The description of problem 1 is as follows:

Problem 1.
H-1

mirllli(l}rll)ize.] = h; E e (x () ,u () (18a)
s.t.

x(h+j+1|h) = g (x(h + j|R), u(h + j|h)) (18b)
y(h+ jlh) = x(h + j|h) (18¢)
y(h|h) = y(h) (18d)
Fomin < Fo < F, (18e)
Umin < U < Upax (18f)
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Fig. 8. Framework of the truck platoon control strategy.

In Problem 1, (18e) is the control constraint, (18f) represents the
speed constraint of the highway. Note that in the speed planning
layer, the formulation primarily focuses on the longitudinal dynamics
and physical constraints of the truck, without explicitly modeling in-
ternal and external uncertainties. This modeling choice is consistent
with many existing studies on fuel-efficient speed planning for truck
platoons [3,8], where simplified longitudinal models are commonly
adopted to ensure tractability of the optimization problem. By con-
centrating on the dominant dynamics and physical limitations of the
truck, the speed planning problem can be effectively solved as an upper-
level optimization that generates a feasible and fuel-efficient reference
trajectory for the platoon. Importantly, by first addressing the domi-
nant dynamics under simplified conditions, this formulation provides
a structured foundation for extending the method to more realistic
scenarios, including mixed traffic, traffic signals, and uncertainties in
vehicle dynamics. By concentrating on the dominant dynamics and
physical limitations of the truck, the speed planning problem can
be effectively solved as an upper-level optimization that generates a
feasible and fuel-efficient reference trajectory for the platoon.

Remark 3. Problem 1 focuses on the speed planning of the leading
truck, considering the tracking capabilities of the following trucks by
applying control constraints. This is a reasonable approach given that it
is neither efficient nor practical to plan different reference velocities for
each truck. Although tracking the leading truck’s reference speed may
slightly increase fuel consumption, the gains in collaborative control
and stability for the platoon outweigh this drawback.

4.2. Platoon control based on DMPC

To ensure practical feasibility in controller design, the following
assumptions are introduced prior to formulating the DMPC problem:

» The communication network among trucks is reliable and free of
packet loss or delay, so that each truck can access the necessary
state information from its neighbors in real time.

» The road geometry is known and detectable by onboard sensors,
and all trucks are assumed to travel on the same lane.

Under the DMPC framework, each truck is equipped with an indi-
vidual control unit.
Denote the state:

x; = [vf U,’.’ @; a)if a),f ef eiy e?]T 19
and the output:
vi=lvf el e efl’ (20)

The control inputs are the driving/brake torque of rear tires, and

the steering angle of the front tires, respectively:
u =T 81" (21)

Denote the sampling time as T,. The discrete form of (11) can be
expressed as follows:

x;(k+1) = f;(x;(k), u;(k))
1 1 1 1 (22)
{ yi(k) = C;x;(k)
where C; = diag(1,0,0,0,0,1,1,1),i=0,1,...,N — 1.
Based on (22), the output of the ith truck is:
T
yi,des (k)=[ Uzdes (k) ef,des (k) e;'v,des (k) eiq,’des (k) ] (23)

where 0¥ (k) is the desired longitudinal speed of the ith truck, and
set v, (k) = vy (k). Terms of e’ | (k), e, (k) and e?, (k) represent

the longitudinal expected position error, lateral expected position error
and expected heading angle error of the ith truck, respectively.
For each truck i, The tracking error is defined as:

e;(k) = y;(k) = yi ges (k) @24
The control sequence in the prediction horizon is defined as:
Uy(k) = {U;(klk), ... U;(k + N, — 1|k)} (25)

where N, represents the prediction horizon within the platoon control
layer. Note that k + j|k denotes the predicted value of the time instant
k for the time instant k + j.

The objective of problem 2 is to ensure the safe control of trucks,
allowing the trucks to maintain a platoon. The description of problem
2 is as follows:
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Problem 2.
mirl},@{%izeJ,. (e;(k), U; (K)) (26a)
S.t.
x;(k+j +11k) = fi(x;(k + jlk), u;(k + j1k)) (26b)
yi(k + jlk) = Cx;(k + jlk) (26¢)
vi (klk) = y; (k) (26d)
1—;",1min < Tld(k + jlk) < T;'[,imax (266)
5i,m[n S 5i(k +j|k) S 5i,max (26f)
e, (k+N,|k)=0 (269)
where
N,—1
T (e (0. U; (0) = Y, (lles e+ 71003, + [l e+ 10]J3, ) @)
Jj=0

In the objective function J;, terms of Q; and R; are the weight
matrices, (26e) and (26f) are the control constraints. Term of (26g) de-
notes the terminal equality constraint, which guarantees the asymptotic
consensus of the truck platoon [62,63]. However, the terminal equality
constraint in the actual solution is difficult to be satisfied. Here, term
of (26g) is reformulated as a soft constraint to facilitate further pro-
cessing, and the term of F; (e; (k + N, plk)) is the terminal cost function,
The expression of the terminal cost function is F; (e; (k + N,|k))

2
He[ (k+N, "lk)HP’ where P, is the terminal penalty matrix, with P, =
10Q;. Then, (275 can be rewritten as:

N,-1
T (e ,U,00) = X (fleg e+ 1[G, + flus k+ 107, )
= i i (28)
+ F; (e; (k+ N,|k))
In summary, the objective of the DMPC formulation is to min-
imize spacing, velocity, and lateral errors while penalizing control
efforts, thereby ensuring platoon consistency and meeting the control
objectives. The constraints (26e)-(26f) reflect the actuator limitations
of trucks, and the terminal condition (26g) is relaxed into a soft
constraint with a terminal cost. The formulation relies on the assump-
tions of reliable communication, accurate local dynamics within the
prediction horizon, and known road geometry. Such a distributed struc-
ture reduces computational burden and ensures scalability to larger
platoons.

4.3. Distributed learning-model predictive control

Reinforcement learning can be employed to learn solutions for spec-
ified optimal control problems in real-time [64]. Predictive controllers
designed for nonlinear systems often involve solving non-convex con-
strained optimization problems. As the system state and control dimen-
sions increase, the computational burden and data storage requirements
also rapidly grow. Currently, numerical solutions are often obtained
through iterative methods, and policy iteration techniques are effective
means for solving optimal control strategies [65]. Here, the actor-critic
neural network structure based on the policy iteration concept in RL is
employed to solve the constrained optimization problem for each truck.

Remark 4. As a practical and efficient implementation of the DL-
MPC method, neural networks and kernel-based basis vectors will be
employed in the DL-MPC method.

Denote the stage cost function as:

ry (e G+ i) (k + 1)) = [le; e+ 1O, + Il e+ O], (29)
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Fig. 9. Diagram of RBF neural network.

In the prediction horizon j € [k,k+N,—1], according to the
Bellman optimality principle, the optimal cost function of the system
satisfies [66,67]:

r (e (k+ j1K) u; (k + 1K) > 30)

J¥(e; (k+jlk)) = _ min
i (:( Jl )) IIU‘luillmﬁ( +J[_* (e,-(k+j+1|k))

and J;* (e (k+ N,Ik)) = e; (k+ N |k)”2 when j =k+ N,
i \€i p i p P »
Then, the optimal control u} (e,- (k + j|k)) satisfies [66,67]:

< ri (e (k+ j1K) u; (e + j1K) > @31

% . _ .
u; (ei (k+J|k)) =arg min +",'* (ei (k+j + llk))

07wl <1
where U is the control constraint matrix and U = diag {Tfmax, 8 max }
Set the number of iterations as /, the convergence accuracy as ¢, and
the maximum number of iterations as /,,,,,. For problem 2, the steps of
iterative DL-MPC method are summarized in Algorithm 1 [67].
Algorithm 1 Iterative DL-MPC method

Initialize: / = 0, set £ > 0 and J? (¢; (k + jlk)) =0, j € [k,k+ N, —1];

repeat
for all j =kk+1,-k+N,-1 do
Calculate u! (e, (k + j|k)) via (31);
Generate the next state e; (k + j + 1]k) via (22);
Calculate J/*! (e, (k+ jlk)) by using J'*' (e (k+jlk) =

r(ek+jlk),u (k+jlk))  + T (ek+j+11k),J €
[k.k+N,—1];
end for

until |71 (e; e+ j10) = I (e; Gk + 1K) | < & O 1= L.

In the DL-MPC method, the actor network is used to approximate
the optimal control law u; (k + j|k), and the critic networks are used
to approximate A} (e,- (k+ j|k)), where 4 = %, which represents the
derivative of the optimal cost function J;* with respect to e;. In the
prediction horizon j € [k,k + N, - 1], N, actor neural networks and
N, critic neural networks will be need to approximate u; (k + j|k) and
A¥ (e; (k+ jlk)) at each step in the prediction horizon, respectively.
In this paper, a radial basis function (RBF) neural network structure
is adopted to realize actor networks and critic networks [68] and its
diagram is shown in Fig. 9.

For j € [k,k+ N, — 1], each actor network is designed as:

il (e;(k+jlk)) =0T Z w (k + j1k) @™ (e; (k + j1k))
fre (32)

=0 (W k+ 10T (e; (k+ jlK)))
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and each critic network is designed as:

A (e e+ jl0) = 3w (ke + jliy g™ (e; (ke + jlie)

m=1

=W, (k+ jlk)"® (e; (k + jlk))

(33)

where I'(-) is tanh(-) and [tanh(:)]] < 1. Terms of ¢, and c, are
the number of the center points of the hidden layer of the actor
networks and the critic networks, respectively. Terms of wL’,';] (k + jlk)
and wit';] (k + j|k) are the weight vectors between the mth center point
and the output layer of the jth actor networks and critic networks when
the number of iterations is /, respectively, and wL',';J (k+jlk) € R?,
w"! (k+jlk) € R*. Terms of ! (e; (k+jlk)) and ¢ (e; (k + jk))
represent the activation function of the mth center point in the hid-
den layer of the actor networks and the critic networks, respectively.
Terms of W, (k+ jlk) and W, (k + j|k) denote the weight matrices
of the jth actor networks and critic networks, respectively. Terms of
¥ (e; (k+ jlk)) and & (e; (k + jlk)) are the basis vectors in the actor
networks and the critic networks, respectively, and they can be denoted
as follows:

2
/x?

2/)(2)
1

where (e! - ¢/”) and (e} - ef*) are used to denote the hidden layer
centroids of the actor networks and the critic networks, respectively,
andk =1.1,¢,=c¢c,=5.

2
e,-—el] ” /K2,

e
.

¥ (e; (k+ jlk)) = <exp_H
|e._e1||2/Kz (€D)]

—”e —efe
MR eXp ! 1

D (e; (k+ jlk)) = (exp_|

The optimal control law u; (k + j|k) satisfies:
0T (e; (k + jlk))
our (k + jlk)
Combining (29), (30) and (35):

1 de; (k+j+ 1lk)
2R\ ou? (k+ jlk)

Let the right side of (32) and (36) be equal, the weight updating of
the actor networks can be obtained as follows:

=0 (35)

T
uf (k + jlk) = ) A (e (k+j + 11k)) (36)

-1
W2 e+ 10 =( (e (e + 110) 7 (e, (e + 1K) ") X (e (k + 1)

1 de;(k+j+1|k) r !
TR, <dﬁf“’(e,(k+/|k)) )
XW, (k + j + 1]k)T
X (e; (k+ j + 1]k))

x |-\t

37)

where W: 1“ (k + j|k) denotes the weight matrix of the jth actor net-
work at the /th policy evaluation and the pth policy update, and
W, (k + jlk) denotes the weight matrix of the jth critic network at
the Ith policy evaluation. a;” (e; (k + j|k)) denotes the output of the
jth actor network during the /th policy evaluation and the pth policy
update.

Note that when updating the weight of the jth actor network, the
output of the (j + 1)th critic network is need to be used. When j =
k+ N, — 1, the weight updating of the (k + N, — 1)th actor network is
as follows:

-1
W2 Gk + 1K) =(q/ (e; (k + j1K)) ¥ (e; (k +j|k))T) X W (e; (k + j1K))
T
1 de; (k+j+1|k)
x|rt1o! _2_Rz<0ﬁf'p(e[(k+j|k))>
X2Pe; (k+j+1|k)
(38)
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By taking the derivative of (30) with respect to u} (k + j|k):
9 (r; (e (k + jlk) . uf (k + 1K) + 7 (e; (k+j + 1]k)))
out (k + jlk)
0r (e (ke + k) uf (k+ 1) 7 de; (k+j+ 11K\ "
- ou’ (k + jlk) ou’ (k + jlk)
oJ; (e; (k+j+1]k)
oe; (k+ j + 1]k)
By taking the derivative of (30) with respect to e; (k + j|k):

(39

0 (r; (e (k+jlk),uf (k+ jlk) + 7 (e; (k+j + 1]k)))
de; (k + jlk)

or; (e; (k+ jlk), uf (k + j|K))

- de; (k + jIk)

ou (k+ jIk)\T or; (e; (k + jlk),uf (k + j|K))

<0e,~(k+j|k)> our (k + jlk)

o (k+ 1O\ [ de; (k+j+ 11k)\ "

<ae,~(k+jlk)> ( ou; (k + jlk) )

0J* (e; (k+j +1[k))

<ae,~(k+j+1|k)>TaJ,~*(ei(k+j+1|k))

A (e (k+ jlk)) =

+

+

de; (k + jlk) de; (k + j + 1]k)
(40)
Combining (39) and (40):
. ‘ or; (e; (k + jlk),u¥ (k + jlk))
A (e (k+ jlk)) = RTEST
(ae,.(k+j+1|k)>TaJ,.* (e; (k +j + 1]k))
de; (k + jlk) de; (k + j + 1]k) (41)
=2Q;e; (k + jlk)
de; (k+j + 11\, )
<m> l[ (Ci(k+j + llk))

Let the right side of (33) and (41) be equal, the weight updating of
the critic networks can be obtained as follows:

-1
W1 (k+ jlk) =(<1> (e; (k + j1K)) ®(e; (K +j|k))T) @ (e, (k + jlk)

. de,(k+j+11k) \ T
x < 20e ko410 + (4555 ) )
XW, (k +j + )T @ (e; (k+j + 1]k))

T

(42)

where W, . (k + j|k) is the weight matrix of the jth critic network at
the (/ + 1)th policy evaluation.

When j = k+ N, -1, the weight updating of the (k + N, — 1)th critic
network is as follows:

-1
Weror ) =(® (e (k4 7110) @(e; (ke +710)" ) (e, (k + 1K)

T
_ dekrjr1 \T “3)
X< 2Q,-e,-<k+/|k>+(w> )

X2Pe; (k+ j + 1]k)
Then, the main procedures in iterative DL-MPC algorithm based on
neural network are given in Algorithm 2.

Remark 5. The convergence of the iterative DL-MPC algorithm is
guaranteed, i,e., when the number of iterations | — oo, satisfying
ul = w, J! > J* and Al - A7 [66,69]. Due to the limitation of
calculation time, the maximum number of iterations and convergence
accuracy need to be specified in advance in this paper. Define [,
as the maximum number of weight updates of critic network in each
prediction horizon, p,,, as the maximum number of weight updates of
actor network, AW, (¢) and AW, (¢) as the convergence thresholds of

the weights of actor network and critic network, respectively.
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Algorithm 2 DL-MPC algorithm based on neural network

Input: The maximum iteration numbers /,,, and p,,,,; the convergence
thresholds AW, (¢) and AW, (¢); truck status at the initial moment;
Output: Optimal or sub-optimal control policy u] (k|k).
1: Initialize the weight matrix of actor networks and critic networks,
and set [ = 0;

2: repeat

3 forallj:k,k+1,---k+Np—1do

4 p=0;

5 repeat

6: Calculate @' (e; (k + j|k)) via (32);

7 Calculate ¢; (k + j + 1]|k) via (22);

8 Update the actor weights via (37) and (38);
9 Setp=p+ 1.

until p = pg, or W2 e+ 1l - W2 )| < 4w, (e
11: Calculate 2! (e; (k + j|k)) via (32);
12: Calculate ¢; (k + j + 1|k) via (22);
13: Update the critic weights via (42) and (43).
14:  end for
15: return!/=1/+1;

16: until I =1, or |W,; (k+ jlk)— W,y (k+ jlK)|| < AW, (¢);
17: Calculate u; (k|k) via (31) and apply it to the system;
18: Set k = k + 1 and go back to 1.

Table 3
The parameters of trucks.
Parameters Value Parameters Value
c, 0.003 Cooro 0.6
A 10 p 1.29 (kg m~3)
a 1 I, 130421.8 (kg m?)
y 44 a 3.5 (m)
p 737 b 1.5 (m)
€ 33 g 9.8 m/s?
T 5 Jy 24 (kg m?)
n 0.9 7 48 (kg m?)
e 0.4 R, 0.51 (m)

Remark 6. The parameters /,,,, and p,.. are set to be constants and
independent of the prediction horizon N,,.

Remark 7. The RBF networks are employed as the function approxi-
mators for the actor and critic networks within the iterative DL-MPC
scheme. The networks are trained online over each prediction horizon,
not with a fixed offline dataset. At time instant k, the training samples
are the error vectors {e; (k + j |k)}j.\[:"0_l generated by the system dynam-
ics (22) under the current policy, and the actor and critic weights are
updated by the policy-iteration-based rules in (37)-(38) and (42)—(43),
respectively. The RBF basis vectors ¥ (-) and @ (-) use Gaussian kernels
and shape parameter x = 1.1. Terms of ¢, = ¢, = 5 are set and
the centers are kept fixed during online updates (Fig. 9, (32)—(34)).
Convergence is determined by the preset iteration limits /,,;,, Pmax> @S
well as the thresholds on weight changes in Algorithm 2.

5. Simulation and analysis

This section provides a simulation study on the fuel-saving control
and computation time of the controller. A truck platoon consists of one
leading truck and three following trucks. The parameters of trucks are
shown in Table 3. The parameters of the controllers are shown in Table
4 and the tire parameters are shown in Table 5.

5.1. Speed optimization of the leading truck

Scenario 1 of slope road is shown in Fig. 10(a), which is composed of
three parts, a flat stretch, an uphill stretch and a downhill stretch with

10
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Table 4
The parameters of controllers.

Parameters Value

N, 3

H 20

AT 0.01 (s)

T, 0.01 (s)

0; 10° x diag(5, 70, 50, 50)

R, diag(0.06, 1.5 x 10°)

dyy, 16 (m)

INQ) tanh (x)

Lnax 4

Pnax 4

AW, (¢) 1072

AW, () 10-2

Table 5
The Tire parameters.

Tire forces B C D E
F,'” 8.61 1.58 22053 0.5624
F¥ 8.61 1.58 44625 0.5624
F,y/ 6.59 1.58 22503 —0.3028
F” 6.59 1.58 44625 —0.3028

3° and —3°, respectively. The curvature information is shown in Fig.
10(b), where the curvature is 0.0025. In this paper, the road adhesion
coefficient is 0.85.

Scenario 2 of slope road is shown in Fig. 11(a), which is composed
of three parts, a flat stretch, a downhill stretch and an uphill stretch
with —2° and 2°, respectively. The curvature information is shown in
Fig. 11(b), where the curvature is 0.002.

The profiles of the fuel-efficient velocity of the leading truck in two
scenarios are shown in Fig. 10(c) and Fig. 11(c), respectively. The road
speed limit v,;, and v,,, are 72 km/h and 90 km/h. It can be seen
from Fig. 10(c) and Fig. 11(c) that the truck velocity does not exceed
the speed limit under this road condition and meets the requirements
of road speed limit.

5.2. Platoon control

5.2.1. Scenario 1

The initial longitudinal velocity of leading truck is 22 m/s, the initial
longitudinal velocities of the following trucks are 21 m/s. Set the initial
longitudinal spacing errors of the following trucks as —1 m, =2 m, -3 m,
respectively. Both the initial lateral position errors and heading angular
errors are 0. Fig. 12(a) shows the driving paths of the truck platoon
on the expressway in Scenario 1, where the three following trucks can
travel along the desired trajectory. Fig. 12(b) shows the longitudinal
positions of the platoon. As shown in Fig. 12(b), the trajectories of the
four trucks remain distinct throughout the entire simulation, with no
overlap or intersection. This indicates that no collisions occurred within
the platoon, ensuring longitudinal safe operation during the simulation.
Fig. 12(c) shows the longitudinal velocities of the platoon, which can
be seen from Fig. 12(c) that when the road conditions change, the
longitudinal velocities of the following trucks are quickly consistent
with the longitudinal velocity of the leading truck.

Fig. 13 shows the simulation results based on the iterative DL-MPC
method. In Fig. 13(a), the maximum longitudinal spacing error of the
platoon fluctuates within +0.7 m, and finally tends to 0. Fig. 13(b) is
the heading angle errors of the trucks, and the maximum deviation is
not more than 0.025 rad, which meets the control requirements. Fig.
13(c) shows the lateral position errors of the following trucks, and the
maximum error is about 0.09 m.
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Fig. 10. Scenario 1: (a) scenario of slope road, (b) road curvature, (c) fuel-efficient velocity.
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Fig. 11. Scenario 2: (a) scenario of slope road, (b) road curvature, (c) fuel-efficient velocity.
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Fig. 12. DL-MPC in Scenario 1: (a) driving paths, (b) longitudinal position, (c¢) longitudinal velocities.
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Fig. 13. DL-MPC in Scenario 1: (a) longitudinal spacing errors of following trucks, (b) angular errors of trucks, (c) lateral position errors of trucks.
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5.2.2. Scenario 2

The initial longitudinal velocity of the leading truck is 23 m/s, the
initial longitudinal velocities of the following trucks are 22 m/s. Set the
initial longitudinal spacing errors of the following trucks as 1 m, 2 m,
3 m, respectively. Both the initial lateral position errors and heading
angular errors are 0.

Fig. 14(a) shows the longitudinal positions of the platoon. As illus-
trated in Fig. 14(a), the trajectories of the four trucks remain distinct
throughout the entire simulation, without any overlap or crossing. This
indicates that no collisions occur within the platoon, thereby ensuring
longitudinal safety. Fig. 14(b) shows the longitudinal velocities of the
platoon. It can be observed from Fig. 14(b) that when the road condi-
tions change, the longitudinal velocities of the following trucks quickly
converge to that of the leading truck. In Fig. 14(c), the maximum
longitudinal spacing error of the platoon fluctuates within +0.6 m and
eventually tends to zero. Fig. 15(a) presents the heading angle errors
of the trucks, where the maximum deviation does not exceed 0.019
rad, satisfying the control requirements. Fig. 15(b) shows the lateral
position errors of the following trucks, with a maximum error of about
0.07 m. From Fig. 15(c), it can be seen that the computation time
remains less than the sampling time.

5.3. Comparison experiments

RL methods have been increasingly applied to truck platoon control
problems in recent years, owing to their ability to optimize decision-
making in complex environments. RL is particularly effective in han-
dling high-dimensional state spaces and nonlinear system behaviors,
making it well-suited for the challenges associated with coordinated
control of multiple trucks. Therefore, to demonstrate the superior con-
trol performance of the proposed method, comparison experiments are
conducted using the DMPC algorithm and the TD3 algorithm [70] in
Scenario 1.

Fig. 16 shows the simulation results based on DMPC. As shown in
Fig. 16(a), the longitudinal position error of the platoon is minimal,
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indicating good longitudinal tracking performance. Figs. 16(b) and
16(c) illustrate the heading angle error and lateral position error of
the platoon, respectively, further demonstrating the effective control
performance of the DMPC algorithm.

In contrast, Fig. 17(a) presents the longitudinal spacing error under
the TD3 algorithm. It can be observed that the follower trucks exhibit
significant fluctuations in position error, which do not converge to
zero. This suggests poor performance in longitudinal control. Figs.
17(b) and 17(c) show the heading angle error and lateral position
error, respectively. While the heading angle error experiences minor
oscillations at the initial stage and during curve negotiation, the lateral
position error exhibits a more noticeable fluctuation of approximately
0.044 m at the beginning. Although the platoon does not encounter any
critical safety issues during the simulation and both the heading angle
and lateral position errors eventually converge to zero, the observed
oscillations indicate potential safety risks, which are unacceptable in
practical applications. It is worth noting that, unlike MPC, which explic-
itly incorporates system constraints into its optimization framework, RL
lacks inherent mechanisms for constraint enforcement.

Fig. 18 shows the comparison of the control performance of the
three methods. Fig. 18(a) illustrates the longitudinal spacing errors of
the three following trucks under the three control algorithms. As shown
in the figure, the DMPC algorithm yields the smallest longitudinal
spacing errors across all trucks, indicating better tracking performance.
In contrast, the TD3 algorithm results in significantly larger errors, par-
ticularly for the second following truck, whose maximum longitudinal
deviation reaches approximately —6.1 m. Figs. 18(b) and 18(c) present
the angular error and lateral position error of the first following truck
as it enters the curve under the three control algorithms. As shown
in Fig. 18(b), the DL-MPC and DMPC algorithms exhibit comparable
performance, whereas the TD3 algorithm results in noticeably larger
angular errors. In Fig. 18(c), although the TD3 algorithm appears to
produce smaller lateral position errors, a comparison with Fig. 17(c)
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reveals that the truck exhibits significant oscillations during the ma-
neuver. These oscillations, despite the smaller error, may compromise
the safety of the truck platoon.

Fig. 19 shows the computation time of the three methods. The
values of three methods are shown in Table 6. It can be seen that the
computation time of the DL-MPC algorithm is less than the sampling
time 7T,. The computation time of the DMPC algorithm is much larger
than the sampling time. It is worth noting that the TD3 algorithm
exhibits a significantly shorter computation time, primarily because
it does not rely on solving optimization problems online. Instead, it
utilizes a trained policy network to make rapid control decisions.

Therefore, by comparing the control performance and computation
time across the three methods, the proposed method demonstrates
superior overall performance, achieving a favorable balance between
control performance and computational efficiency.
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Table 6

Comparison of the computation time of the three methods.

Methods Minimum Maximum Average
DL-MPC 1.1 (ms) 7 (ms) 1.45 (ms)
DMPC 4.8 (ms) 332.3 (ms) 52.65 (ms)
TD3 4.7x 1073 (ms) 94 x 10~ (ms) 8.23 x 1073 (ms)

5.4. Fuel consumption of platoons

This part presents the fuel consumption for speed planning, constant
speed, experience-based speed setting [31], and speed planning based
on RL [34], respectively, to demonstrate the efficiency of the fuel-
saving strategy in Scenario 1. Figs. 20 to 23 show the platoon control
results under three different speed scenarios.

Fig. 20 shows the longitudinal velocities of the platoon under
three different scenarios. From Fig. 20, it can be observed that as the
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leading truck’s velocity changes, the following trucks effectively track indicate that the longitudinal spacing errors of the following trucks con-

the curve. Fig. 21 presents the variation in the longitudinal spacing verge quickly, demonstrating that the controller ensures each following
errors between each following truck and the leading truck. The results truck maintains good longitudinal tracking performance. Figs. 22 and

14



S. Yu et al

Energy 337 (2025) 138618

0.03 - 0.03 - 0.03 -
Leading truck Leading truck Leading truck
— Ith truck — 1th truck — Ith truck
0.02 2th truck —— 0.02 2th truck 0.02 2thtruck | ____
_ —3th truck ! | _ — 3th truck _ — 3th truck |
= = =
g 001 - Ui | g 001t 7 g 001f o
= -7 = - = P
2 el 2 e £ e
5 0 = u 5 o0 — 5 o0 e
2 o8 B 0.019 2 4 2 0018 002
B 0.018 .016
%ﬂ 001 ,8:81 3 d% 5}]2 %ﬂ 001 {00l L0.021 %“ 001 88}% o0
000 (lﬁ 0 T K Obotl)% oo 0008515 0.024
-0.02 F0.008 -0.023 i ! -0.02 [0.008 0.023 0021 9 s | 747678
70 80 75 80 L-. 70 80 74 76
-0.03 -0.03 -0.03
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s) Time (s)

0.1

(a)

(b)

Fig. 22. Angular errors of trucks: (a) constant speed, (b) speed setting, (c) RL-speed planning.

()

0.1
Leading truck Leading truck Leading truck

— 1th truck — 1th truck — 1th truck " o
= 2th truck - = 2th truck . _ 005 2th truck Al
E 0.05|—3th truck I E 0.05 |— 3th truck T g —— 3th truck g
= B = L Bl = -
£ 7 £ A £ o
5} - 5} e 2 0 -
§ s § P " S K. /,0 09
Z 0 = Z 0 - Z 0.06 -
£ 0.06 0.084 E f0 084 £ s 0.095
E] ).055 88§§ B o(s]g 20,08 3 -0.05 {005 o
2 -005}005 “0.09 2 005,045 0088 g 0.04
) ).045 -0.092 - a o4 009 a i 72 74 76 78\

-0.094 \\ 035 -0.094 \ 65 70 75 1
1 E y L i
66 70 74 7476 78 Opf 65 70 75 7 76 T 0.1
0.1 — 0.1 =
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s) Time (s)

(a)

(b)
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23 display the angular errors and lateral position errors for each truck
in the platoon under the three different scenarios. From these results,
it is evident that the angular and lateral position errors of all trucks are
small, thus meeting the control objectives.

Note that the superiority does not lie in the control performance.
Instead, the real difference shows up in the fuel consumption, namely,
the new method is more energy efficient.

Figs. 24 presents a comparative analysis of engine operating point
distributions for the truck platoon under different strategies. As shown
in Figs. 24(a), the proposed speed planning method results in most
engine operating points concentrating within the region of minimum
fuel consumption, demonstrating its effectiveness in optimizing power
output and improving fuel economy.

In contrast, Fig. 24(b) illustrates the engine operating point distri-
bution under a constant-speed driving strategy. Under this strategy,
trucks require additional driving torque to maintain speed during uphill
climbs due to gravitational resistance, while braking is needed downhill
to prevent overspeeding. Consequently, the engine frequently operates
outside the optimal efficiency zone.

Figs. 24(c) and 24(d) depict the engine operating point distributions
for experience-based speed setting and RL-based speed planning meth-
ods, respectively. The experience-based method, relying on empirical
formulations, lacks adaptive adjustment capabilities for real-world driv-
ing conditions, leading to a scattered distribution of engine operating
points and suboptimal efficiency. Meanwhile, the RL approach, which
can be viewed as an adaptive learning extension of the proposed speed
planning method, autonomously adjusts speed strategies based on road
conditions and powertrain demands, driving engine operation closer
to the optimal fuel consumption region. A comparison of Figs. 24(a)
to 24(d) confirms that the proposed speed planning method achieves
superior energy-saving performance.

Remark 8. Note that the three trucks share identical physical param-
eters except for slight differences in mass, their operating points differ
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marginally because the following trucks must compensate for spacing
and tracking errors relative to the leading truck. This explains why their
engine points cluster closely in the same high-efficiency region in Fig.
24.

Fig. 25 illustrates the fuel consumption histograms for the four
methods. Based on speed planning fuel consumption data, it is clear
that despite the greater mass of 1th following truck compared to the
leading truck, there is still a fuel efficiency of about 5.1%, due to the
significantly lower air resistance coefficient. 2th following truck can
save about 7.14% on fuel compared to the first following truck, even
with the same load. The air resistance coefficients of 2th following
truck and 3th following truck are almost identical [71,72]. The fuel
consumption slightly increases when the 3th following truck has a
greater mass than 2th truck. Compared to total fuel consumption, speed
planning can save 3.43%, 11% and 2.39% compared with constant
speed, speed setting and RL-speed planning, respectively.

6. Conclusion

In order to balance the fuel-saving and safety of truck platoons, this
paper constructed a hierarchical strategy, including a speed planning
layer and a platoon control layer. Firstly, the fuel-efficient velocity is
determined based on the fuel consumption model, taking into account
the tracking ability of the following trucks. Secondly, the DL-MPC
was employed considering longitudinal and lateral coupling dynamics.
Finally, co-simulation results revealed that the fuel consumption of
the platoon based on speed planning was lower than that of constant
speed, experience-based speed setting and RL-speed planning, where
the energy-saving effect was illustrated by the fuel consumption char-
acteristics of the engine. In addition, the performance of the iterative
DL-MPC method was compared with the DMPC and TD3 methods in
ensuring safety control of the platoon. It should be noted that the
method proposed in this paper achieves a balance between the control
performance and the computation time.
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Beyond the specific application to truck platooning, the proposed

DL-MPC framework has the potential to be extended to other coop-
erative control scenarios, such as automated transportation systems,
smart grids, and unmanned aerial vehicle (UAV) platoons. In future
work, platoon control will be investigated under more complex traf-
fic environments, taking into account mixed traffic conditions, traffic
signals, and uncertainties arising from vehicle dynamics. These studies
aim to further enhance the robustness and practical applicability of the
DL-MPC approach in real-world cooperative control systems.
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